lightning/pytorch_lightning/trainer/callback_config.py

100 lines
3.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from abc import ABC, abstractmethod
from typing import List, Optional
from pytorch_lightning.callbacks import Callback, ModelCheckpoint, EarlyStopping, ProgressBarBase, ProgressBar
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_utils import is_overridden
from pytorch_lightning.core.lightning import LightningModule
class TrainerCallbackConfigMixin(ABC):
# this is just a summary on variables used in this abstract class,
# the proper values/initialisation should be done in child class
callbacks: List[Callback]
default_root_dir: str
logger: LightningLoggerBase
weights_save_path: Optional[str]
ckpt_path: str
checkpoint_callback: Optional[ModelCheckpoint]
@property
@abstractmethod
def slurm_job_id(self) -> int:
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def save_checkpoint(self, *args):
"""Warning: this is just empty shell for code implemented in other class."""
@abstractmethod
def get_model(self) -> LightningModule:
"""Warning: this is just empty shell for code implemented in other class."""
def configure_checkpoint_callback(self, checkpoint_callback):
if checkpoint_callback is True:
# when no val step is defined, use 'loss' otherwise 'val_loss'
train_step_only = not is_overridden('validation_step', self.get_model())
monitor_key = 'loss' if train_step_only else 'val_loss'
checkpoint_callback = ModelCheckpoint(
filepath=None,
monitor=monitor_key
)
elif checkpoint_callback is False:
checkpoint_callback = None
if checkpoint_callback:
checkpoint_callback.save_function = self.save_checkpoint
return checkpoint_callback
def configure_early_stopping(self, early_stop_callback):
if early_stop_callback is True or None:
early_stop_callback = EarlyStopping(
monitor='val_loss',
patience=3,
strict=True,
verbose=True,
mode='min'
)
elif not early_stop_callback:
early_stop_callback = None
else:
early_stop_callback = early_stop_callback
return early_stop_callback
def configure_progress_bar(self, refresh_rate=1, process_position=0):
progress_bars = [c for c in self.callbacks if isinstance(c, ProgressBarBase)]
if len(progress_bars) > 1:
raise MisconfigurationException(
'You added multiple progress bar callbacks to the Trainer, but currently only one'
' progress bar is supported.'
)
elif len(progress_bars) == 1:
progress_bar_callback = progress_bars[0]
elif refresh_rate > 0:
progress_bar_callback = ProgressBar(
refresh_rate=refresh_rate,
process_position=process_position,
)
self.callbacks.append(progress_bar_callback)
else:
progress_bar_callback = None
return progress_bar_callback