403 lines
14 KiB
Python
403 lines
14 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
"""
|
|
This file provides functions and decorators for automated input and output
|
|
conversion to/from :class:`numpy.ndarray` and :class:`torch.Tensor` as well as utilities to
|
|
sync tensors between different processes in a DDP scenario, when needed.
|
|
"""
|
|
|
|
import numbers
|
|
from typing import Any, Callable, Optional, Union
|
|
|
|
import numpy as np
|
|
import torch
|
|
from torch.utils.data._utils.collate import np_str_obj_array_pattern
|
|
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
|
from pytorch_lightning.utilities.apply_func import apply_to_collection
|
|
|
|
try:
|
|
from torch.distributed import ReduceOp
|
|
except ImportError:
|
|
class ReduceOp:
|
|
SUM = None
|
|
|
|
rank_zero_warn('Unsupported `ReduceOp` for distributed computing')
|
|
|
|
|
|
def _apply_to_inputs(func_to_apply: Callable, *dec_args, **dec_kwargs) -> Callable:
|
|
"""
|
|
Decorator function to apply a function to all inputs of a function.
|
|
|
|
Args:
|
|
func_to_apply: the function to apply to the inputs
|
|
*dec_args: positional arguments for the function to be applied
|
|
**dec_kwargs: keyword arguments for the function to be applied
|
|
|
|
Return:
|
|
the decorated function
|
|
"""
|
|
|
|
def decorator_fn(func_to_decorate):
|
|
# actual function applying the give function to inputs
|
|
def new_func(*args, **kwargs):
|
|
args = func_to_apply(args, *dec_args, **dec_kwargs)
|
|
kwargs = func_to_apply(kwargs, *dec_args, **dec_kwargs)
|
|
return func_to_decorate(*args, **kwargs)
|
|
|
|
return new_func
|
|
|
|
return decorator_fn
|
|
|
|
|
|
def _apply_to_outputs(func_to_apply: Callable, *dec_args, **dec_kwargs) -> Callable:
|
|
"""
|
|
Decorator function to apply a function to all outputs of a function.
|
|
|
|
Args:
|
|
func_to_apply: the function to apply to the outputs
|
|
*dec_args: positional arguments for the function to be applied
|
|
**dec_kwargs: keyword arguments for the function to be applied
|
|
|
|
Return:
|
|
the decorated function
|
|
"""
|
|
|
|
def decorator_fn(function_to_decorate):
|
|
# actual function applying the give function to outputs
|
|
def new_func(*args, **kwargs):
|
|
result = function_to_decorate(*args, **kwargs)
|
|
return func_to_apply(result, *dec_args, **dec_kwargs)
|
|
|
|
return new_func
|
|
|
|
return decorator_fn
|
|
|
|
|
|
def convert_to_tensor(data: Any, dtype=None, device=None) -> Any:
|
|
"""
|
|
Maps all kind of collections and numbers to tensors.
|
|
|
|
Args:
|
|
data: the data to convert to tensor
|
|
dtype: data type to convert to
|
|
device: device to cast to
|
|
|
|
Return:
|
|
the converted data
|
|
"""
|
|
if isinstance(data, numbers.Number):
|
|
return torch.tensor([data], dtype=dtype, device=device)
|
|
# is not array of object
|
|
elif isinstance(data, np.ndarray) and np_str_obj_array_pattern.search(data.dtype.str) is None:
|
|
return torch.from_numpy(data).to(device=device, dtype=dtype)
|
|
elif isinstance(data, torch.Tensor):
|
|
return data.to(device=device, dtype=dtype)
|
|
|
|
raise TypeError(f"The given type ('{type(data).__name__}') cannot be converted to a tensor!")
|
|
|
|
|
|
def convert_to_numpy(data: Union[torch.Tensor, np.ndarray, numbers.Number]) -> np.ndarray:
|
|
"""Convert all tensors and numpy arrays to numpy arrays.
|
|
|
|
Args:
|
|
data: the tensor or array to convert to numpy
|
|
|
|
Return:
|
|
the resulting numpy array
|
|
"""
|
|
if isinstance(data, torch.Tensor):
|
|
return data.cpu().detach().numpy()
|
|
elif isinstance(data, numbers.Number):
|
|
return np.array([data])
|
|
elif isinstance(data, np.ndarray):
|
|
return data
|
|
|
|
raise TypeError("The given type ('%s') cannot be converted to a numpy array!" % type(data).__name__)
|
|
|
|
|
|
def _numpy_metric_input_conversion(func_to_decorate: Callable) -> Callable:
|
|
"""
|
|
Decorator converting all inputs of a function to numpy
|
|
|
|
Args:
|
|
func_to_decorate: the function whose inputs shall be converted
|
|
|
|
Return:
|
|
Callable: the decorated function
|
|
"""
|
|
return _apply_to_inputs(
|
|
apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), convert_to_numpy)(func_to_decorate)
|
|
|
|
|
|
def _tensor_metric_output_conversion(func_to_decorate: Callable) -> Callable:
|
|
"""
|
|
Decorator converting all outputs of a function to tensors
|
|
|
|
Args:
|
|
func_to_decorate: the function whose outputs shall be converted
|
|
|
|
Return:
|
|
Callable: the decorated function
|
|
"""
|
|
return _apply_to_outputs(convert_to_tensor)(func_to_decorate)
|
|
|
|
|
|
def _numpy_metric_conversion(func_to_decorate: Callable) -> Callable:
|
|
"""
|
|
Decorator handling the argument conversion for metrics working on numpy.
|
|
All inputs of the decorated function will be converted to numpy and all
|
|
outputs will be converted to tensors.
|
|
|
|
Args:
|
|
func_to_decorate: the function whose inputs and outputs shall be converted
|
|
|
|
Return:
|
|
the decorated function
|
|
"""
|
|
# applies collection conversion from tensor to numpy to all inputs
|
|
# we need to include numpy arrays here, since otherwise they will also be treated as sequences
|
|
func_convert_inputs = _numpy_metric_input_conversion(func_to_decorate)
|
|
# converts all inputs back to tensors (device doesn't matter here, since this is handled by BaseMetric)
|
|
func_convert_in_out = _tensor_metric_output_conversion(func_convert_inputs)
|
|
return func_convert_in_out
|
|
|
|
|
|
def _tensor_metric_input_conversion(func_to_decorate: Callable) -> Callable:
|
|
"""
|
|
Decorator converting all inputs of a function to tensors
|
|
|
|
Args:
|
|
func_to_decorate: the function whose inputs shall be converted
|
|
|
|
Return:
|
|
Callable: the decorated function
|
|
"""
|
|
return _apply_to_inputs(
|
|
apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number), convert_to_tensor)(func_to_decorate)
|
|
|
|
|
|
def _tensor_collection_metric_output_conversion(func_to_decorate: Callable) -> Callable:
|
|
"""
|
|
Decorator converting all numpy arrays and numbers occuring in the outputs of a function to tensors
|
|
|
|
Args:
|
|
func_to_decorate: the function whose outputs shall be converted
|
|
|
|
Return:
|
|
Callable: the decorated function
|
|
"""
|
|
return _apply_to_outputs(apply_to_collection, (torch.Tensor, np.ndarray, numbers.Number),
|
|
convert_to_tensor)(func_to_decorate)
|
|
|
|
|
|
def _tensor_metric_conversion(func_to_decorate: Callable) -> Callable:
|
|
"""
|
|
Decorator Handling the argument conversion for metrics working on tensors.
|
|
All inputs and outputs of the decorated function will be converted to tensors
|
|
|
|
Args:
|
|
func_to_decorate: the function whose inputs and outputs shall be converted
|
|
|
|
Return:
|
|
the decorated function
|
|
"""
|
|
# converts all inputs to tensor if possible
|
|
# we need to include tensors here, since otherwise they will also be treated as sequences
|
|
func_convert_inputs = _tensor_metric_input_conversion(func_to_decorate)
|
|
# convert all outputs to tensor if possible
|
|
return _tensor_metric_output_conversion(func_convert_inputs)
|
|
|
|
|
|
def _tensor_collection_metric_conversion(func_to_decorate: Callable) -> Callable:
|
|
"""
|
|
Decorator Handling the argument conversion for metrics working on tensors.
|
|
All inputs of the decorated function and all numpy arrays and numbers in
|
|
it's outputs will be converted to tensors
|
|
|
|
Args:
|
|
func_to_decorate: the function whose inputs and outputs shall be converted
|
|
|
|
Return:
|
|
the decorated function
|
|
"""
|
|
# converts all inputs to tensor if possible
|
|
# we need to include tensors here, since otherwise they will also be treated as sequences
|
|
func_convert_inputs = _tensor_metric_input_conversion(func_to_decorate)
|
|
# convert all outputs to tensor if possible
|
|
return _tensor_collection_metric_output_conversion(func_convert_inputs)
|
|
|
|
|
|
def sync_ddp_if_available(result: Union[torch.Tensor],
|
|
group: Optional[Any] = None,
|
|
reduce_op: Optional[ReduceOp] = None
|
|
) -> torch.Tensor:
|
|
"""
|
|
Function to reduce the tensors from several ddp processes to one master process
|
|
|
|
Args:
|
|
result: the value to sync and reduce (typically tensor or number)
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
reduce_op: the reduction operation. Defaults to sum.
|
|
Can also be a string of 'avg', 'mean' to calculate the mean during reduction.
|
|
|
|
Return:
|
|
reduced value
|
|
"""
|
|
|
|
if torch.distributed.is_available() and torch.distributed.is_initialized():
|
|
divide_by_world_size = False
|
|
|
|
if group is None:
|
|
group = torch.distributed.group.WORLD
|
|
|
|
if reduce_op is None:
|
|
reduce_op = torch.distributed.ReduceOp.SUM
|
|
elif isinstance(reduce_op, str) and reduce_op in ('avg', 'mean'):
|
|
reduce_op = torch.distributed.ReduceOp.SUM
|
|
divide_by_world_size = True
|
|
|
|
# sync all processes before reduction
|
|
torch.distributed.barrier(group=group)
|
|
torch.distributed.all_reduce(result, op=reduce_op, group=group,
|
|
async_op=False)
|
|
|
|
if divide_by_world_size:
|
|
result = result / torch.distributed.get_world_size(group)
|
|
|
|
return result
|
|
|
|
|
|
def gather_all_tensors_if_available(result: Union[torch.Tensor],
|
|
group: Optional[Any] = None):
|
|
"""
|
|
Function to gather all tensors from several ddp processes onto a list that
|
|
is broadcasted to all processes
|
|
|
|
Args:
|
|
result: the value to sync
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
|
|
Return:
|
|
gathered_result: list with size equal to the process group where
|
|
gathered_result[i] corresponds to result tensor from process i
|
|
|
|
"""
|
|
if torch.distributed.is_available() and torch.distributed.is_initialized():
|
|
if group is None:
|
|
group = torch.distributed.group.WORLD
|
|
|
|
world_size = torch.distributed.get_world_size(group)
|
|
|
|
gathered_result = [torch.zeros_like(result) for _ in range(world_size)]
|
|
|
|
# sync and broadcast all
|
|
torch.distributed.barrier(group=group)
|
|
torch.distributed.all_gather(gathered_result, result, group)
|
|
|
|
result = gathered_result
|
|
|
|
return result
|
|
|
|
|
|
def sync_ddp(group: Optional[Any] = None,
|
|
reduce_op: Optional[ReduceOp] = None) -> Callable:
|
|
"""
|
|
This decorator syncs a functions outputs across different processes for DDP.
|
|
|
|
Args:
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
reduce_op: the reduction operation. Defaults to sum
|
|
|
|
Return:
|
|
the decorated function
|
|
|
|
"""
|
|
|
|
def decorator_fn(func_to_decorate):
|
|
return _apply_to_outputs(apply_to_collection, torch.Tensor,
|
|
sync_ddp_if_available, group=group,
|
|
reduce_op=reduce_op)(func_to_decorate)
|
|
|
|
return decorator_fn
|
|
|
|
|
|
def numpy_metric(group: Optional[Any] = None,
|
|
reduce_op: Optional[ReduceOp] = None) -> Callable:
|
|
"""
|
|
This decorator shall be used on all function metrics working on numpy arrays.
|
|
It handles the argument conversion and DDP reduction for metrics working on numpy.
|
|
All inputs of the decorated function will be converted to numpy and all
|
|
outputs will be converted to tensors.
|
|
In DDP Training all output tensors will be reduced according to the given rules.
|
|
|
|
Args:
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
reduce_op: the reduction operation. Defaults to sum
|
|
|
|
Return:
|
|
the decorated function
|
|
"""
|
|
|
|
def decorator_fn(func_to_decorate):
|
|
return sync_ddp(group=group, reduce_op=reduce_op)(_numpy_metric_conversion(func_to_decorate))
|
|
|
|
return decorator_fn
|
|
|
|
|
|
def tensor_metric(group: Optional[Any] = None,
|
|
reduce_op: Optional[ReduceOp] = None) -> Callable:
|
|
"""
|
|
This decorator shall be used on all function metrics working on tensors.
|
|
It handles the argument conversion and DDP reduction for metrics working on tensors.
|
|
All inputs and outputs of the decorated function will be converted to tensors.
|
|
In DDP Training all output tensors will be reduced according to the given rules.
|
|
|
|
Args:
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
reduce_op: the reduction operation. Defaults to sum
|
|
|
|
Return:
|
|
the decorated function
|
|
"""
|
|
|
|
def decorator_fn(func_to_decorate):
|
|
return sync_ddp(group=group, reduce_op=reduce_op)(_tensor_metric_conversion(func_to_decorate))
|
|
|
|
return decorator_fn
|
|
|
|
|
|
def tensor_collection_metric(group: Optional[Any] = None,
|
|
reduce_op: Optional[ReduceOp] = None) -> Callable:
|
|
"""
|
|
This decorator shall be used on all function metrics working on tensors and returning collections
|
|
that cannot be converted to tensors.
|
|
It handles the argument conversion and DDP reduction for metrics working on tensors.
|
|
All inputs and outputs of the decorated function will be converted to tensors.
|
|
In DDP Training all output tensors will be reduced according to the given rules.
|
|
|
|
Args:
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
reduce_op: the reduction operation. Defaults to sum
|
|
|
|
Return:
|
|
the decorated function
|
|
"""
|
|
|
|
def decorator_fn(func_to_decorate):
|
|
return sync_ddp(group=group, reduce_op=reduce_op)(_tensor_collection_metric_conversion(func_to_decorate))
|
|
|
|
return decorator_fn
|