531 lines
18 KiB
ReStructuredText
531 lines
18 KiB
ReStructuredText
.. testsetup:: *
|
|
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.core.datamodule import LightningDataModule
|
|
from pytorch_lightning.trainer.trainer import Trainer
|
|
import os
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from torch.utils.data import DataLoader
|
|
from torch.utils.data import DataLoader
|
|
import pytorch_lightning as pl
|
|
from torch.utils.data import random_split
|
|
|
|
.. _3-steps:
|
|
|
|
####################
|
|
Lightning in 3 steps
|
|
####################
|
|
|
|
**In this guide we'll show you how to organize your PyTorch code into Lightning in 3 simple steps.**
|
|
|
|
Organizing your code with PyTorch Lightning makes your code:
|
|
|
|
* Keep all the flexibility (this is all pure PyTorch), but removes a ton of boilerplate
|
|
* More readable by decoupling the research code from the engineering
|
|
* Easier to reproduce
|
|
* Less error prone by automating most of the training loop and tricky engineering
|
|
* Scalable to any hardware without changing your model
|
|
|
|
----------
|
|
|
|
Here's a 2 minute conversion guide for PyTorch projects:
|
|
|
|
.. raw:: html
|
|
|
|
<video width="100%" controls autoplay src="https://pl-bolts-doc-images.s3.us-east-2.amazonaws.com/pl_docs/pl_quick_start_full.m4v"></video>
|
|
|
|
----------
|
|
|
|
*********************************
|
|
Step 0: Install PyTorch Lightning
|
|
*********************************
|
|
|
|
|
|
You can install using `pip <https://pypi.org/project/pytorch-lightning/>`_
|
|
|
|
.. code-block:: bash
|
|
|
|
pip install pytorch-lightning
|
|
|
|
Or with `conda <https://anaconda.org/conda-forge/pytorch-lightning>`_ (see how to install conda `here <https://docs.conda.io/projects/conda/en/latest/user-guide/install/>`_):
|
|
|
|
.. code-block:: bash
|
|
|
|
conda install pytorch-lightning -c conda-forge
|
|
|
|
You could also use conda environments
|
|
|
|
.. code-block:: bash
|
|
|
|
conda activate my_env
|
|
pip install pytorch-lightning
|
|
|
|
|
|
----------
|
|
|
|
******************************
|
|
Step 1: Define LightningModule
|
|
******************************
|
|
|
|
.. code-block::
|
|
|
|
import os
|
|
import torch
|
|
import torch.nn.functional as F
|
|
from torchvision.datasets import MNIST
|
|
from torchvision import transforms
|
|
from torch.utils.data import DataLoader
|
|
import pytorch_lightning as pl
|
|
from torch.utils.data import random_split
|
|
|
|
class LitModel(pl.LightningModule):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer_1 = torch.nn.Linear(28 * 28, 128)
|
|
self.layer_2 = torch.nn.Linear(128, 10)
|
|
|
|
def forward(self, x):
|
|
x = x.view(x.size(0), -1)
|
|
x = self.layer_1(x)
|
|
x = F.relu(x)
|
|
x = self.layer_2(x)
|
|
return x
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
|
return optimizer
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
result = pl.TrainResult(loss)
|
|
return result
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
result = pl.EvalResult(checkpoint_on=loss)
|
|
result.log('val_loss', loss)
|
|
return result
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
result = pl.EvalResult()
|
|
result.log('test_loss', loss)
|
|
return result
|
|
|
|
The :class:`~pytorch_lightning.core.LightningModule` holds your research code:
|
|
|
|
- The Train loop
|
|
- The Validation loop
|
|
- The Test loop
|
|
- The Model + system architecture
|
|
- The Optimizer
|
|
|
|
A :class:`~pytorch_lightning.core.LightningModule` is a :class:`torch.nn.Module` but with added functionality.
|
|
It organizes your research code into :ref:`hooks`.
|
|
|
|
In the snippet above we override the basic hooks, but a full list of hooks to customize can be found under :ref:`hooks`.
|
|
|
|
You can use your :class:`~pytorch_lightning.core.LightningModule` just like a PyTorch model.
|
|
|
|
.. code-block:: python
|
|
|
|
model = LitModel()
|
|
model.eval()
|
|
|
|
y_hat = model(x)
|
|
|
|
model.anything_you_can_do_with_pytorch()
|
|
|
|
More details in :ref:`lightning-module` docs.
|
|
|
|
Convert your PyTorch Module to Lightning
|
|
========================================
|
|
|
|
1. Move your computational code
|
|
-------------------------------
|
|
Move the model architecture and forward pass to your :class:`~pytorch_lightning.core.LightningModule`.
|
|
|
|
.. code-block::
|
|
|
|
class LitModel(pl.LightningModule):
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.layer_1 = torch.nn.Linear(28 * 28, 128)
|
|
self.layer_2 = torch.nn.Linear(128, 10)
|
|
|
|
def forward(self, x):
|
|
x = x.view(x.size(0), -1)
|
|
x = self.layer_1(x)
|
|
x = F.relu(x)
|
|
x = self.layer_2(x)
|
|
return x
|
|
|
|
2. Move the optimizer(s) and schedulers
|
|
---------------------------------------
|
|
Move your optimizers to :func:`pytorch_lightning.core.LightningModule.configure_optimizers` hook. Make sure to use the hook parameters (self in this case).
|
|
|
|
.. code-block::
|
|
|
|
class LitModel(pl.LightningModule):
|
|
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
|
|
return optimizer
|
|
|
|
3. Find the train loop "meat"
|
|
-----------------------------
|
|
Lightning automates most of the trining for you, the epoch and batch iterations, all you need to keep is the training step logic. This should go into :func:`pytorch_lightning.core.LightningModule.training_step` hook (make sure to use the hook parameters, self in this case):
|
|
|
|
.. code-block::
|
|
|
|
class LitModel(pl.LightningModule):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
return loss
|
|
|
|
4. Find the val loop "meat"
|
|
-----------------------------
|
|
Lightning automates the validation (enabling gradients in the train loop and disabling in eval). To add an (optional) validation loop add logic to :func:`pytorch_lightning.core.LightningModule.validation_step` hook (make sure to use the hook parameters, self in this case):
|
|
|
|
.. testcode::
|
|
|
|
class LitModel(LightningModule):
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
val_loss = F.cross_entropy(y_hat, y)
|
|
return val_loss
|
|
|
|
5. Find the test loop "meat"
|
|
-----------------------------
|
|
You might also need an optional test loop. Add the following callback to your :class:`~pytorch_lightning.core.LightningModule`
|
|
|
|
.. code-block::
|
|
|
|
class LitModel(pl.LightningModule):
|
|
|
|
def test_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
result = pl.EvalResult()
|
|
result.log('test_loss', loss)
|
|
return result
|
|
|
|
.. note:: The test loop is not automated in Lightning. You will need to specifically call test (this is done so you don't use the test set by mistake).
|
|
|
|
6. Remove any .cuda() or to.device() calls
|
|
------------------------------------------
|
|
Your :class:`~pytorch_lightning.core.LightningModule` can automatically run on any hardware!
|
|
|
|
7. Wrap loss in a TrainResult/EvalResult
|
|
----------------------------------------
|
|
Instead of returning the loss you can also use :class:`~pytorch_lightning.core.step_result.TrainResult` and :class:`~pytorch_lightning.core.step_result.EvalResult`, plain Dict objects that give you options for logging on every step and/or at the end of the epoch.
|
|
It also allows logging to the progress bar (by setting prog_bar=True). Read more in :ref:`result`.
|
|
|
|
.. code-block::
|
|
|
|
class LitModel(pl.LightningModule):
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
result = pl.TrainResult(minimize=loss)
|
|
# Add logging to progress bar (note that refreshing the progress bar too frequently
|
|
# in Jupyter notebooks or Colab may freeze your UI)
|
|
result.log('train_loss', loss, prog_bar=True)
|
|
return result
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
loss = F.cross_entropy(y_hat, y)
|
|
# Checkpoint model based on validation loss
|
|
result = pl.EvalResult(checkpoint_on=loss)
|
|
result.log('val_loss', loss)
|
|
return result
|
|
|
|
|
|
8. Override default callbacks
|
|
-----------------------------
|
|
A :class:`~pytorch_lightning.core.LightningModule` handles advances cases by allowing you to override any critical part of training
|
|
via :ref:`hooks` that are called on your :class:`~pytorch_lightning.core.LightningModule`.
|
|
|
|
.. code-block::
|
|
|
|
class LitModel(pl.LightningModule):
|
|
|
|
def backward(self, trainer, loss, optimizer, optimizer_idx):
|
|
loss.backward()
|
|
|
|
def optimizer_step(self, epoch, batch_idx,
|
|
optimizer, optimizer_idx,
|
|
second_order_closure,
|
|
on_tpu, using_native_amp, using_lbfgs):
|
|
optimizer.step()
|
|
|
|
For certain train/val/test loops, you may wish to do more than just logging. In this case,
|
|
you can also implement `__epoch_end` which gives you the output for each step
|
|
|
|
Here's the motivating Pytorch example:
|
|
|
|
.. code-block:: python
|
|
|
|
validation_step_outputs = []
|
|
for batch_idx, batch in val_dataloader():
|
|
out = validation_step(batch, batch_idx)
|
|
validation_step_outputs.append(out)
|
|
|
|
validation_epoch_end(validation_step_outputs)
|
|
|
|
And the lightning equivalent
|
|
|
|
.. code-block::
|
|
|
|
class LitModel(pl.LightningModule):
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
loss = ...
|
|
predictions = ...
|
|
result = pl.EvalResult(checkpoint_on=loss)
|
|
result.log('val_loss', loss)
|
|
result.predictions = predictions
|
|
|
|
def validation_epoch_end(self, validation_step_outputs):
|
|
all_val_losses = validation_step_outputs.val_loss
|
|
all_predictions = validation_step_outputs.predictions
|
|
|
|
----------
|
|
|
|
**********************************
|
|
Step 2: Fit with Lightning Trainer
|
|
**********************************
|
|
|
|
.. code-block::
|
|
|
|
# dataloaders
|
|
dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
|
|
train, val = random_split(dataset, [55000, 5000])
|
|
train_loader = DataLoader(train)
|
|
val_loader = DataLoader(val)
|
|
|
|
# init model
|
|
model = LitModel()
|
|
|
|
# most basic trainer, uses good defaults (auto-tensorboard, checkpoints, logs, and more)
|
|
trainer = pl.Trainer()
|
|
trainer.fit(model, train_loader, val_loader)
|
|
|
|
Init :class:`~pytorch_lightning.core.LightningModule`, your PyTorch dataloaders, and then the PyTorch Lightning :class:`~pytorch_lightning.trainer.Trainer`.
|
|
The :class:`~pytorch_lightning.trainer.Trainer` will automate:
|
|
|
|
* The epoch iteration
|
|
* The batch iteration
|
|
* The calling of optimizer.step()
|
|
* :ref:`weights-loading`
|
|
* Logging to Tensorboard (see :ref:`loggers` options)
|
|
* :ref:`multi-gpu-training` support
|
|
* :ref:`tpu`
|
|
* :ref:`16-bit` support
|
|
|
|
All automated code is rigorously tested and benchmarked.
|
|
|
|
Check out more flags in the :ref:`trainer` docs.
|
|
|
|
Using CPUs/GPUs/TPUs
|
|
====================
|
|
It's trivial to use CPUs, GPUs or TPUs in Lightning. There's NO NEED to change your code, simply change the :class:`~pytorch_lightning.trainer.Trainer` options.
|
|
|
|
.. code-block:: python
|
|
|
|
# train on 1024 CPUs across 128 machines
|
|
trainer = pl.Trainer(
|
|
num_processes=8,
|
|
num_nodes=128
|
|
)
|
|
|
|
.. code-block:: python
|
|
|
|
# train on 1 GPU
|
|
trainer = pl.Trainer(gpus=1)
|
|
|
|
.. code-block:: python
|
|
|
|
# train on 256 GPUs
|
|
trainer = pl.Trainer(
|
|
gpus=8,
|
|
num_nodes=32
|
|
)
|
|
|
|
.. code-block:: python
|
|
|
|
# Multi GPU with mixed precision
|
|
trainer = pl.Trainer(gpus=2, precision=16)
|
|
|
|
.. code-block:: python
|
|
|
|
# Train on TPUs
|
|
trainer = pl.Trainer(tpu_cores=8)
|
|
|
|
Without changing a SINGLE line of your code, you can now do the following with the above code:
|
|
|
|
.. code-block:: python
|
|
|
|
# train on TPUs using 16 bit precision with early stopping
|
|
# using only half the training data and checking validation every quarter of a training epoch
|
|
trainer = pl.Trainer(
|
|
tpu_cores=8,
|
|
precision=16,
|
|
early_stop_callback=True,
|
|
limit_train_batches=0.5,
|
|
val_check_interval=0.25
|
|
)
|
|
|
|
************************
|
|
Step 3: Define Your Data
|
|
************************
|
|
Lightning works with pure PyTorch DataLoaders
|
|
|
|
.. code-block:: python
|
|
|
|
train_dataloader = DataLoader(...)
|
|
val_dataloader = DataLoader(...)
|
|
trainer.fit(model, train_dataloader, val_dataloader)
|
|
|
|
Optional: DataModule
|
|
====================
|
|
DataLoader and data processing code tends to end up scattered around.
|
|
Make your data code more reusable by organizing
|
|
it into a :class:`~pytorch_lightning.core.datamodule.LightningDataModule`
|
|
|
|
.. code-block:: python
|
|
|
|
class MNISTDataModule(pl.LightningDataModule):
|
|
|
|
def __init__(self, batch_size=32):
|
|
super().__init__()
|
|
self.batch_size = batch_size
|
|
|
|
# When doing distributed training, Datamodules have two optional arguments for
|
|
# granular control over download/prepare/splitting data:
|
|
|
|
# OPTIONAL, called only on 1 GPU/machine
|
|
def prepare_data(self):
|
|
MNIST(os.getcwd(), train=True, download=True)
|
|
MNIST(os.getcwd(), train=False, download=True)
|
|
|
|
# OPTIONAL, called for every GPU/machine (assigning state is OK)
|
|
def setup(self, stage):
|
|
# transforms
|
|
transform=transforms.Compose([
|
|
transforms.ToTensor(),
|
|
transforms.Normalize((0.1307,), (0.3081,))
|
|
])
|
|
# split dataset
|
|
if stage == 'fit':
|
|
mnist_train = MNIST(os.getcwd(), train=True, transform=transform)
|
|
self.mnist_train, self.mnist_val = random_split(mnist_train, [55000, 5000])
|
|
if stage == 'test':
|
|
self.mnist_test = MNIST(os.getcwd(), train=False, transform=transform)
|
|
|
|
# return the dataloader for each split
|
|
def train_dataloader(self):
|
|
mnist_train = DataLoader(self.mnist_train, batch_size=self.batch_size)
|
|
return mnist_train
|
|
|
|
def val_dataloader(self):
|
|
mnist_val = DataLoader(self.mnist_val, batch_size=self.batch_size)
|
|
return mnist_val
|
|
|
|
def test_dataloader(self):
|
|
mnist_test = DataLoader(self.mnist_test, batch_size=self.batch_size)
|
|
return mnist_test
|
|
|
|
:class:`~pytorch_lightning.core.datamodule.LightningDataModule` is designed to enable sharing and reusing data splits
|
|
and transforms across different projects. It encapsulates all the steps needed to process data: downloading,
|
|
tokenizing, processing etc.
|
|
|
|
Now you can simply pass your :class:`~pytorch_lightning.core.datamodule.LightningDataModule` to
|
|
the :class:`~pytorch_lightning.trainer.Trainer`:
|
|
|
|
.. code-block::
|
|
|
|
# init model
|
|
model = LitModel()
|
|
|
|
# init data
|
|
dm = MNISTDataModule()
|
|
|
|
# train
|
|
trainer = pl.Trainer()
|
|
trainer.fit(model, dm)
|
|
|
|
# test
|
|
trainer.test(datamodule=dm)
|
|
|
|
DataModules are specifically useful for building models based on data. Read more on :ref:`data-modules`.
|
|
|
|
**********
|
|
Learn more
|
|
**********
|
|
|
|
That's it! Once you build your module, data, and call trainer.fit(), Lightning trainer calls each loop at the correct time as needed.
|
|
|
|
You can then boot up your logger or tensorboard instance to view training logs
|
|
|
|
.. code-block:: bash
|
|
|
|
tensorboard --logdir ./lightning_logs
|
|
|
|
---------------
|
|
|
|
|
|
Advanced Lightning Features
|
|
===========================
|
|
|
|
Once you define and train your first Lightning model, you might want to try other cool features like
|
|
|
|
- :ref:`loggers`
|
|
- `Automatic checkpointing <https://pytorch-lightning.readthedocs.io/en/stable/weights_loading.html>`_
|
|
- `Automatic early stopping <https://pytorch-lightning.readthedocs.io/en/stable/early_stopping.html>`_
|
|
- `Add custom callbacks <https://pytorch-lightning.readthedocs.io/en/stable/callbacks.html>`_ (self-contained programs that can be reused across projects)
|
|
- `Dry run mode <https://pytorch-lightning.readthedocs.io/en/stable/debugging.html#fast-dev-run>`_ (Hit every line of your code once to see if you have bugs, instead of waiting hours to crash on validation ;)
|
|
- `Automatically overfit your model for a sanity test <https://pytorch-lightning.readthedocs.io/en/stable/debugging.html?highlight=overfit#make-model-overfit-on-subset-of-data>`_
|
|
- `Automatic truncated-back-propagation-through-time <https://pytorch-lightning.readthedocs.io/en/stable/api/pytorch_lightning.trainer.training_loop.html?highlight=truncated#truncated-backpropagation-through-time>`_
|
|
- `Automatically scale your batch size <https://pytorch-lightning.readthedocs.io/en/stable/training_tricks.html?highlight=batch%20size#auto-scaling-of-batch-size>`_
|
|
- `Automatically find a good learning rate <https://pytorch-lightning.readthedocs.io/en/stable/lr_finder.html>`_
|
|
- `Load checkpoints directly from S3 <https://pytorch-lightning.readthedocs.io/en/stable/weights_loading.html#checkpoint-loading>`_
|
|
- `Profile your code for speed/memory bottlenecks <https://pytorch-lightning.readthedocs.io/en/stable/profiler.html>`_
|
|
- `Scale to massive compute clusters <https://pytorch-lightning.readthedocs.io/en/stable/slurm.html>`_
|
|
- `Use multiple dataloaders per train/val/test loop <https://pytorch-lightning.readthedocs.io/en/stable/multiple_loaders.html>`_
|
|
- `Use multiple optimizers to do Reinforcement learning or even GANs <https://pytorch-lightning.readthedocs.io/en/stable/optimizers.html?highlight=multiple%20optimizers#use-multiple-optimizers-like-gans>`_
|
|
|
|
Or read our :ref:`introduction-guide` to learn more!
|
|
|
|
-------------
|
|
|
|
Masterclass
|
|
===========
|
|
|
|
Go pro by tunning in to our Masterclass! New episodes every week.
|
|
|
|
.. image:: _images/general/PTL101_youtube_thumbnail.jpg
|
|
:width: 500
|
|
:align: center
|
|
:alt: Masterclass
|
|
:target: https://www.youtube.com/playlist?list=PLaMu-SDt_RB5NUm67hU2pdE75j6KaIOv2
|