lightning/pytorch_lightning/plugins/precision/deepspeed_precision.py

77 lines
3.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, Callable, Optional, Union
from torch import Tensor
from torch.nn import Module
from torch.optim import Optimizer
import pytorch_lightning as pl
from pytorch_lightning.plugins.precision.precision_plugin import PrecisionPlugin
from pytorch_lightning.utilities import GradClipAlgorithmType
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.model_helpers import is_overridden
from pytorch_lightning.utilities.warnings import WarningCache
warning_cache = WarningCache()
class DeepSpeedPrecisionPlugin(PrecisionPlugin):
"""Precision plugin for DeepSpeed integration."""
def __init__(self, precision: int) -> None:
super().__init__()
self.precision = precision
def pre_optimizer_step(
self,
model: "pl.LightningModule",
optimizer: Optimizer,
optimizer_idx: int,
lambda_closure: Callable,
**kwargs: Any,
) -> bool:
"""Hook to do something before each optimizer step."""
result = lambda_closure() # DeepSpeed does not support closures
super().pre_optimizer_step(model, optimizer, optimizer_idx, lambda_closure, **kwargs)
# in manual optimization, the closure does not return a value
if model.automatic_optimization and result is None:
raise MisconfigurationException(
"Skipping backward by returning `None` from your `training_step` is not supported by `DeepSpeed`"
)
# the following should be in a `optimizer_step` hook but we don't have one in the precision plugin.
deepspeed_engine = model.trainer.model
deepspeed_engine.step()
return False
def backward(self, model: "pl.LightningModule", closure_loss: Tensor, *args: Any, **kwargs: Any) -> None:
if is_overridden("backward", model):
warning_cache.warn(
"You have overridden the `LightningModule.backward` hook but it will be ignored since DeepSpeed handles"
" the backward logic internally."
)
# todo: hack around for deepspeed engine to call backward
deepspeed_engine = model.trainer.model
deepspeed_engine.backward(closure_loss, *args, **kwargs)
def clip_gradients(
self,
optimizer: Optimizer,
clip_val: Union[int, float],
gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM,
model: Optional[Module] = None,
) -> None:
"""DeepSpeed handles clipping gradients internally via the training type plugin."""
pass