lightning/tests
Adrian Wälchli f7e1040236 Docs and Tests for "gpus" Trainer Argument (#593)
* add table for gpus argument

* fix typo in error message

* tests for supported values

* tests for unsupported values

* fix typo

* add table for gpus argument

* fix typo in error message

* tests for supported values

* tests for unsupported values

* fix typo

* fix typo list->str

* fix travis warning "line too long"
2019-12-07 08:48:45 -05:00
..
README.md Update README.md 2019-10-23 06:13:31 -04:00
__init__.py added init to test folder 2019-07-24 21:32:31 -04:00
debug.py rename variables nb -> num (#567) 2019-12-04 06:57:10 -05:00
requirements.txt Fix setup-doc for pypi (#472) 2019-11-09 00:59:14 -05:00
test_amp.py rename variables nb -> num (#567) 2019-12-04 06:57:10 -05:00
test_cpu_models.py rename variables nb -> num (#567) 2019-12-04 06:57:10 -05:00
test_gpu_models.py Docs and Tests for "gpus" Trainer Argument (#593) 2019-12-07 08:48:45 -05:00
test_logging.py Fix CometML tests (#585) 2019-12-07 00:24:59 -05:00
test_restore_models.py rename variables nb -> num (#567) 2019-12-04 06:57:10 -05:00
test_trainer.py rename trainer modules, drop `_mixin` (#571) 2019-12-04 11:39:14 -05:00
utils.py prune tests (#564) 2019-12-04 06:48:53 -05:00

README.md

PyTorch-Lightning Tests

Most PL tests train a full MNIST model under various trainer conditions (ddp, ddp2+amp, etc...). This provides testing for most combinations of important settings. The tests expect the model to perform to a reasonable degree of testing accuracy to pass.

Running tests

The automatic travis tests ONLY run CPU-based tests. Although these cover most of the use cases, run on a 2-GPU machine to validate the full test-suite.

To run all tests do the following:

git clone https://github.com/williamFalcon/pytorch-lightning
cd pytorch-lightning

# install module locally
pip install -e .

# install dev deps
pip install -r requirements.txt

# run tests
py.test -v

To test models that require GPU make sure to run the above command on a GPU machine. The GPU machine must have:

  1. At least 2 GPUs.
  2. NVIDIA-apex installed.

Running Coverage

Make sure to run coverage on a GPU machine with at least 2 GPUs and NVIDIA apex installed.

cd pytorch-lightning

# generate coverage 
pip install coverage
coverage run --source pytorch_lightning -m py.test pytorch_lightning tests examples -v --doctest-modules

# print coverage stats
coverage report -m

# exporting resulys
coverage xml
codecov -t 17327163-8cca-4a5d-86c8-ca5f2ef700bc  -v