lightning/dockers
Sean Naren f7459f5328
DeepSpeed Infinity Update (#7234)
* Update configs to match latest API

* Ensure we move the entire model to device before configure optimizer is called

* Add missing param

* Expose parameters

* Update references, drop local rank as it's now infered from the environment variable

* Fix ref

* Force install deepspeed 0.3.16

* Add guard for init

* Update pytorch_lightning/plugins/training_type/deepspeed.py

Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>

* Revert type checking

* Install master for CI for testing purposes

* Update CI

* Fix tests

* Add check

* Update versions

* Set precision

* Fix

* See if i can force upgrade

* Attempt to fix

* Drop

* Add changelog

Co-authored-by: Carlos Mocholí <carlossmocholi@gmail.com>
2021-06-14 16:38:28 +00:00
..
base-conda docker use $(nproc) (#7606) 2021-05-19 21:48:14 +02:00
base-cuda DeepSpeed Infinity Update (#7234) 2021-06-14 16:38:28 +00:00
base-ipu MAINTAINER has been deprecated (#7683) 2021-05-25 00:01:31 +05:30
base-xla MAINTAINER has been deprecated (#7683) 2021-05-25 00:01:31 +05:30
ipu-ci-runner MAINTAINER has been deprecated (#7683) 2021-05-25 00:01:31 +05:30
nvidia Fix NVIDIA docker versions (#7834) 2021-06-06 23:56:27 +02:00
release MAINTAINER has been deprecated (#7683) 2021-05-25 00:01:31 +05:30
tpu-tests MAINTAINER has been deprecated (#7683) 2021-05-25 00:01:31 +05:30
README.md Update README.md (#7717) 2021-05-26 12:58:11 +02:00

README.md

Docker images

Builds images form attached Dockerfiles

You can build it on your own, note it takes lots of time, be prepared.

git clone <git-repository>
docker image build -t pytorch-lightning:latest -f dockers/conda/Dockerfile .

or with specific arguments

git clone <git-repository>
docker image build \
    -t pytorch-lightning:base-cuda-py3.8-pt1.8 \
    -f dockers/base-cuda/Dockerfile \
    --build-arg PYTHON_VERSION=3.8 \
    --build-arg PYTORCH_VERSION=1.8 \
    .

or nightly version from Conda

git clone <git-repository>
docker image build \
    -t pytorch-lightning:base-conda-py3.8-pt1.9 \
    -f dockers/base-conda/Dockerfile \
    --build-arg PYTHON_VERSION=3.8 \
    --build-arg PYTORCH_VERSION=1.9 \
    .

To run your docker use

docker image list
docker run --rm -it pytorch-lightning:latest bash

and if you do not need it anymore, just clean it:

docker image list
docker image rm pytorch-lightning:latest

Run docker image with GPUs

To run docker image with access to you GPUs you need to install

# Add the package repositories
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list

sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
sudo systemctl restart docker

and later run the docker image with --gpus all so for example

docker run --rm -it --gpus all pytorchlightning/pytorch_lightning:base-cuda-py3.7-torch1.6

Run Jupyter server

Inspiration comes from https://u.group/thinking/how-to-put-jupyter-notebooks-in-a-dockerfile

  1. Build the docker image:
    docker image build \
        -t pytorch-lightning:v1.3.1 \
        -f dockers/nvidia/Dockerfile \
        --build-arg LIGHTNING_VERSION=1.3.1 \
        .
    
  2. start the server and map ports:
    docker run --rm -it --runtime=nvidia -e NVIDIA_VISIBLE_DEVICES=all -p 8888:8888 pytorch-lightning:v1.3.1
    
  3. Connect in local browser:
    • copy the generated path e.g. http://hostname:8888/?token=0719fa7e1729778b0cec363541a608d5003e26d4910983c6
    • replace the hostname by localhost