lightning/tests/test_restore_models.py

409 lines
12 KiB
Python

import os
import pytest
import torch
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.testing import LightningTestModel
from . import testing_utils
def test_running_test_pretrained_model_ddp():
"""Verify test() on pretrained model"""
if not testing_utils.can_run_gpu_test():
return
testing_utils.reset_seed()
testing_utils.set_random_master_port()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
# exp file to get meta
logger = testing_utils.get_test_tube_logger(False)
# exp file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
trainer_options = dict(
show_progress_bar=False,
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.2,
checkpoint_callback=checkpoint,
logger=logger,
gpus=[0, 1],
distributed_backend='ddp'
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
exp = logger.experiment
print(os.listdir(exp.get_data_path(exp.name, exp.version)))
# correct result and ok accuracy
assert result == 1, 'training failed to complete'
pretrained_model = testing_utils.load_model(logger.experiment,
trainer.checkpoint_callback.filepath,
module_class=LightningTestModel)
# run test set
new_trainer = Trainer(**trainer_options)
new_trainer.test(pretrained_model)
for dataloader in model.test_dataloader():
testing_utils.run_prediction(dataloader, pretrained_model)
testing_utils.clear_save_dir()
def test_running_test_pretrained_model():
testing_utils.reset_seed()
"""Verify test() on pretrained model"""
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
# logger file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
trainer_options = dict(
show_progress_bar=False,
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.2,
checkpoint_callback=checkpoint,
logger=logger
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'training failed to complete'
pretrained_model = testing_utils.load_model(
logger.experiment, trainer.checkpoint_callback.filepath, module_class=LightningTestModel
)
new_trainer = Trainer(**trainer_options)
new_trainer.test(pretrained_model)
# test we have good test accuracy
testing_utils.assert_ok_test_acc(new_trainer)
testing_utils.clear_save_dir()
def test_load_model_from_checkpoint():
testing_utils.reset_seed()
"""Verify test() on pretrained model"""
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
trainer_options = dict(
show_progress_bar=False,
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.2,
checkpoint_callback=True,
logger=False,
default_save_path=save_dir
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'training failed to complete'
pretrained_model = LightningTestModel.load_from_checkpoint(
os.path.join(trainer.checkpoint_callback.filepath, "_ckpt_epoch_1.ckpt")
)
# test that hparams loaded correctly
for k, v in vars(hparams).items():
assert getattr(pretrained_model.hparams, k) == v
new_trainer = Trainer(**trainer_options)
new_trainer.test(pretrained_model)
# test we have good test accuracy
testing_utils.assert_ok_test_acc(new_trainer)
testing_utils.clear_save_dir()
def test_running_test_pretrained_model_dp():
testing_utils.reset_seed()
"""Verify test() on pretrained model"""
if not testing_utils.can_run_gpu_test():
return
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
# logger file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
trainer_options = dict(
show_progress_bar=True,
max_nb_epochs=1,
train_percent_check=0.4,
val_percent_check=0.2,
checkpoint_callback=checkpoint,
logger=logger,
gpus=[0, 1],
distributed_backend='dp'
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# correct result and ok accuracy
assert result == 1, 'training failed to complete'
pretrained_model = testing_utils.load_model(logger.experiment,
trainer.checkpoint_callback.filepath,
module_class=LightningTestModel)
new_trainer = Trainer(**trainer_options)
new_trainer.test(pretrained_model)
# test we have good test accuracy
testing_utils.assert_ok_test_acc(new_trainer)
testing_utils.clear_save_dir()
def test_dp_resume():
"""
Make sure DP continues training correctly
:return:
"""
if not testing_utils.can_run_gpu_test():
return
testing_utils.reset_seed()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
trainer_options = dict(
show_progress_bar=True,
max_nb_epochs=2,
gpus=2,
distributed_backend='dp',
)
save_dir = testing_utils.init_save_dir()
# get logger
logger = testing_utils.get_test_tube_logger(debug=False)
# exp file to get weights
# logger file to get weights
checkpoint = testing_utils.init_checkpoint_callback(logger)
# add these to the trainer options
trainer_options['logger'] = logger
trainer_options['checkpoint_callback'] = checkpoint
# fit model
trainer = Trainer(**trainer_options)
trainer.is_slurm_managing_tasks = True
result = trainer.fit(model)
# track epoch before saving
real_global_epoch = trainer.current_epoch
# correct result and ok accuracy
assert result == 1, 'amp + dp model failed to complete'
# ---------------------------
# HPC LOAD/SAVE
# ---------------------------
# save
trainer.hpc_save(save_dir, logger)
# init new trainer
new_logger = testing_utils.get_test_tube_logger(version=logger.version)
trainer_options['logger'] = new_logger
trainer_options['checkpoint_callback'] = ModelCheckpoint(save_dir)
trainer_options['train_percent_check'] = 0.2
trainer_options['val_percent_check'] = 0.2
trainer_options['max_nb_epochs'] = 1
new_trainer = Trainer(**trainer_options)
# set the epoch start hook so we can predict before the model does the full training
def assert_good_acc():
assert new_trainer.current_epoch == real_global_epoch and new_trainer.current_epoch > 0
# if model and state loaded correctly, predictions will be good even though we
# haven't trained with the new loaded model
dp_model = new_trainer.model
dp_model.eval()
dataloader = trainer.get_train_dataloader()
testing_utils.run_prediction(dataloader, dp_model, dp=True)
# new model
model = LightningTestModel(hparams)
model.on_sanity_check_start = assert_good_acc
# fit new model which should load hpc weights
new_trainer.fit(model)
# test freeze on gpu
model.freeze()
model.unfreeze()
testing_utils.clear_save_dir()
def test_cpu_restore_training():
"""
Verify continue training session on CPU
:return:
"""
testing_utils.reset_seed()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
# logger file to get meta
test_logger_version = 10
logger = testing_utils.get_test_tube_logger(False, version=test_logger_version)
trainer_options = dict(
max_nb_epochs=2,
val_check_interval=0.50,
val_percent_check=0.2,
train_percent_check=0.2,
logger=logger,
checkpoint_callback=ModelCheckpoint(save_dir)
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
real_global_epoch = trainer.current_epoch
# traning complete
assert result == 1, 'amp + ddp model failed to complete'
# wipe-out trainer and model
# retrain with not much data... this simulates picking training back up after slurm
# we want to see if the weights come back correctly
new_logger = testing_utils.get_test_tube_logger(False, version=test_logger_version)
trainer_options = dict(
max_nb_epochs=2,
val_check_interval=0.50,
val_percent_check=0.2,
train_percent_check=0.2,
logger=new_logger,
checkpoint_callback=ModelCheckpoint(save_dir),
)
trainer = Trainer(**trainer_options)
model = LightningTestModel(hparams)
# set the epoch start hook so we can predict before the model does the full training
def assert_good_acc():
assert trainer.current_epoch > 0
assert trainer.current_epoch == real_global_epoch
# if model and state loaded correctly, predictions will be good even though we
# haven't trained with the new loaded model
trainer.model.eval()
for dataloader in trainer.get_val_dataloaders():
testing_utils.run_prediction(dataloader, trainer.model)
model.on_sanity_check_start = assert_good_acc
# by calling fit again, we trigger training, loading weights from the cluster
# and our hook to predict using current model before any more weight updates
trainer.fit(model)
testing_utils.clear_save_dir()
def test_model_saving_loading():
"""
Tests use case where trainer saves the model, and user loads it from tags independently
:return:
"""
testing_utils.reset_seed()
hparams = testing_utils.get_hparams()
model = LightningTestModel(hparams)
save_dir = testing_utils.init_save_dir()
# logger file to get meta
logger = testing_utils.get_test_tube_logger(False)
trainer_options = dict(
max_nb_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(save_dir)
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# traning complete
assert result == 1, 'amp + ddp model failed to complete'
# make a prediction
for dataloader in model.test_dataloader():
for batch in dataloader:
break
x, y = batch
x = x.view(x.size(0), -1)
# generate preds before saving model
model.eval()
pred_before_saving = model(x)
# save model
new_weights_path = os.path.join(save_dir, 'save_test.ckpt')
trainer.save_checkpoint(new_weights_path)
# load new model
tags_path = logger.experiment.get_data_path(logger.experiment.name, logger.experiment.version)
tags_path = os.path.join(tags_path, 'meta_tags.csv')
model_2 = LightningTestModel.load_from_metrics(weights_path=new_weights_path,
tags_csv=tags_path)
model_2.eval()
# make prediction
# assert that both predictions are the same
new_pred = model_2(x)
assert torch.all(torch.eq(pred_before_saving, new_pred)).item() == 1
testing_utils.clear_save_dir()
if __name__ == '__main__':
pytest.main([__file__])