61 lines
2.0 KiB
Python
61 lines
2.0 KiB
Python
# Copyright The PyTorch Lightning team.
|
||
#
|
||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
# you may not use this file except in compliance with the License.
|
||
# You may obtain a copy of the License at
|
||
#
|
||
# http://www.apache.org/licenses/LICENSE-2.0
|
||
#
|
||
# Unless required by applicable law or agreed to in writing, software
|
||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
# See the License for the specific language governing permissions and
|
||
# limitations under the License.
|
||
|
||
import torch
|
||
|
||
from pytorch_lightning.metrics.functional.nlp import bleu_score
|
||
from pytorch_lightning.metrics.metric import Metric
|
||
|
||
|
||
class BLEUScore(Metric):
|
||
"""
|
||
Calculate BLEU score of machine translated text with one or more references.
|
||
|
||
Example:
|
||
|
||
>>> translate_corpus = ['the cat is on the mat'.split()]
|
||
>>> reference_corpus = [['there is a cat on the mat'.split(), 'a cat is on the mat'.split()]]
|
||
>>> metric = BLEUScore()
|
||
>>> metric(translate_corpus, reference_corpus)
|
||
tensor(0.7598)
|
||
"""
|
||
|
||
def __init__(self, n_gram: int = 4, smooth: bool = False):
|
||
"""
|
||
Args:
|
||
n_gram: Gram value ranged from 1 to 4 (Default 4)
|
||
smooth: Whether or not to apply smoothing – Lin et al. 2004
|
||
"""
|
||
super().__init__(name="bleu")
|
||
self.n_gram = n_gram
|
||
self.smooth = smooth
|
||
|
||
def forward(self, translate_corpus: list, reference_corpus: list) -> torch.Tensor:
|
||
"""
|
||
Actual metric computation
|
||
|
||
Args:
|
||
translate_corpus: An iterable of machine translated corpus
|
||
reference_corpus: An iterable of iterables of reference corpus
|
||
|
||
Return:
|
||
torch.Tensor: BLEU Score
|
||
"""
|
||
return bleu_score(
|
||
translate_corpus=translate_corpus,
|
||
reference_corpus=reference_corpus,
|
||
n_gram=self.n_gram,
|
||
smooth=self.smooth,
|
||
).to(self.device, self.dtype)
|