lightning/tests/tests_pytorch/loggers/test_wandb.py

381 lines
14 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import pickle
from unittest import mock
import pytest
import pytorch_lightning
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests_pytorch.helpers.utils import no_warning_call
@mock.patch("pytorch_lightning.loggers.wandb.Run", new=mock.Mock)
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
def test_wandb_project_name(*_):
logger = WandbLogger()
assert logger.name == "lightning_logs"
logger = WandbLogger(project="project")
assert logger.name == "project"
@mock.patch("pytorch_lightning.loggers.wandb.Run", new=mock.Mock)
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
def test_wandb_logger_init(wandb, monkeypatch):
"""Verify that basic functionality of wandb logger works.
Wandb doesn't work well with pytest so we have to mock it out here.
"""
# test wandb.init called when there is no W&B run
wandb.run = None
logger = WandbLogger(
name="test_name", save_dir="test_save_dir", version="test_id", project="test_project", resume="never"
)
logger.log_metrics({"acc": 1.0})
wandb.init.assert_called_once_with(
name="test_name", dir="test_save_dir", id="test_id", project="test_project", resume="never", anonymous=None
)
wandb.init().log.assert_called_once_with({"acc": 1.0})
# test wandb.init called with project as name if name not provided
wandb.run = None
wandb.init.reset_mock()
WandbLogger(project="test_project").experiment
wandb.init.assert_called_once_with(
name=None, dir=".", id=None, project="test_project", resume="allow", anonymous=None
)
# test wandb.init set save_dir correctly after created
wandb.run = None
wandb.init.reset_mock()
logger = WandbLogger()
assert logger.save_dir is not None
wandb.run = None
wandb.init.reset_mock()
logger = WandbLogger(save_dir=".", dir=None)
assert logger.save_dir is not None
# test wandb.init and setting logger experiment externally
wandb.run = None
run = wandb.init()
logger = WandbLogger(experiment=run)
assert logger.experiment
# test wandb.init not called if there is a W&B run
wandb.init().log.reset_mock()
wandb.init.reset_mock()
wandb.run = wandb.init()
monkeypatch.setattr(pytorch_lightning.loggers.wandb, "_WANDB_GREATER_EQUAL_0_12_10", True)
with pytest.warns(UserWarning, match="There is a wandb run already in progress"):
logger = WandbLogger()
# check that no new run is created
with no_warning_call(UserWarning, match="There is a wandb run already in progress"):
_ = logger.experiment
# verify default resume value
assert logger._wandb_init["resume"] == "allow"
logger.log_metrics({"acc": 1.0}, step=3)
wandb.init.assert_called_once()
wandb.init().log.assert_called_once_with({"acc": 1.0, "trainer/global_step": 3})
# continue training on same W&B run and offset step
logger.finalize("success")
logger.log_metrics({"acc": 1.0}, step=6)
wandb.init().log.assert_called_with({"acc": 1.0, "trainer/global_step": 6})
# log hyper parameters
logger.log_hyperparams({"test": None, "nested": {"a": 1}, "b": [2, 3, 4]})
wandb.init().config.update.assert_called_once_with(
{"test": None, "nested/a": 1, "b": [2, 3, 4]}, allow_val_change=True
)
# watch a model
logger.watch("model", "log", 10, False)
wandb.init().watch.assert_called_once_with("model", log="log", log_freq=10, log_graph=False)
assert logger.version == wandb.init().id
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
def test_wandb_pickle(wandb, tmpdir):
"""Verify that pickling trainer with wandb logger works.
Wandb doesn't work well with pytest so we have to mock it out here.
"""
class Experiment:
id = "the_id"
step = 0
dir = "wandb"
@property
def name(self):
return "the_run_name"
with mock.patch("pytorch_lightning.loggers.wandb.Run", new=Experiment):
wandb.run = None
wandb.init.return_value = Experiment()
logger = WandbLogger(id="the_id", offline=True)
trainer = Trainer(default_root_dir=tmpdir, max_epochs=1, logger=logger)
# Access the experiment to ensure it's created
assert trainer.logger.experiment, "missing experiment"
assert trainer.log_dir == logger.save_dir
pkl_bytes = pickle.dumps(trainer)
trainer2 = pickle.loads(pkl_bytes)
assert os.environ["WANDB_MODE"] == "dryrun"
assert trainer2.logger.__class__.__name__ == WandbLogger.__name__
assert trainer2.logger.experiment, "missing experiment"
wandb.init.assert_called()
assert "id" in wandb.init.call_args[1]
assert wandb.init.call_args[1]["id"] == "the_id"
del os.environ["WANDB_MODE"]
@mock.patch("pytorch_lightning.loggers.wandb.Run", new=mock.Mock)
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
def test_wandb_logger_dirs_creation(wandb, monkeypatch, tmpdir):
"""Test that the logger creates the folders and files in the right place."""
monkeypatch.setattr(pytorch_lightning.loggers.wandb, "_WANDB_GREATER_EQUAL_0_12_10", True)
wandb.run = None
logger = WandbLogger(project="project", save_dir=str(tmpdir), offline=True)
# the logger get initialized
assert logger.version == wandb.init().id
# mock return values of experiment
wandb.run = None
logger.experiment.id = "1"
logger.experiment.name = "run_name"
for _ in range(2):
_ = logger.experiment
assert logger.version == "1"
assert logger.name == "project"
assert str(tmpdir) == logger.save_dir
assert not os.listdir(tmpdir)
version = logger.version
model = BoringModel()
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=1, limit_train_batches=3, limit_val_batches=3)
assert trainer.log_dir == logger.save_dir
trainer.fit(model)
assert trainer.checkpoint_callback.dirpath == str(tmpdir / "project" / version / "checkpoints")
assert set(os.listdir(trainer.checkpoint_callback.dirpath)) == {"epoch=0-step=3.ckpt"}
assert trainer.log_dir == logger.save_dir
@mock.patch("pytorch_lightning.loggers.wandb.Run", new=mock.Mock)
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
def test_wandb_log_model(wandb, monkeypatch, tmpdir):
"""Test that the logger creates the folders and files in the right place."""
monkeypatch.setattr(pytorch_lightning.loggers.wandb, "_WANDB_GREATER_EQUAL_0_10_22", True)
wandb.run = None
model = BoringModel()
# test log_model=True
logger = WandbLogger(save_dir=tmpdir, log_model=True)
logger.experiment.id = "1"
logger.experiment.name = "run_name"
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=2, limit_train_batches=3, limit_val_batches=3)
trainer.fit(model)
wandb.init().log_artifact.assert_called_once()
# test log_model='all'
wandb.init().log_artifact.reset_mock()
wandb.init.reset_mock()
logger = WandbLogger(save_dir=tmpdir, log_model="all")
logger.experiment.id = "1"
logger.experiment.name = "run_name"
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=2, limit_train_batches=3, limit_val_batches=3)
trainer.fit(model)
assert wandb.init().log_artifact.call_count == 2
# test log_model=False
wandb.init().log_artifact.reset_mock()
wandb.init.reset_mock()
logger = WandbLogger(save_dir=tmpdir, log_model=False)
logger.experiment.id = "1"
logger.experiment.name = "run_name"
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=2, limit_train_batches=3, limit_val_batches=3)
trainer.fit(model)
assert not wandb.init().log_artifact.called
# test correct metadata
wandb.init().log_artifact.reset_mock()
wandb.init.reset_mock()
wandb.Artifact.reset_mock()
logger = WandbLogger(save_dir=tmpdir, log_model=True)
logger.experiment.id = "1"
logger.experiment.name = "run_name"
trainer = Trainer(default_root_dir=tmpdir, logger=logger, max_epochs=2, limit_train_batches=3, limit_val_batches=3)
trainer.fit(model)
wandb.Artifact.assert_called_once_with(
name="model-1",
type="model",
metadata={
"score": None,
"original_filename": "epoch=1-step=6-v3.ckpt",
"ModelCheckpoint": {
"monitor": None,
"mode": "min",
"save_last": None,
"save_top_k": 1,
"save_weights_only": False,
"_every_n_train_steps": 0,
},
},
)
@mock.patch("pytorch_lightning.loggers.wandb.Run", new=mock.Mock)
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
def test_wandb_log_model_with_score(wandb, monkeypatch, tmpdir):
"""Test to prevent regression on #15543, ensuring the score is logged as a Python number, not a scalar
tensor."""
monkeypatch.setattr(pytorch_lightning.loggers.wandb, "_WANDB_GREATER_EQUAL_0_10_22", True)
wandb.run = None
model = BoringModel()
wandb.init().log_artifact.reset_mock()
wandb.init.reset_mock()
wandb.Artifact.reset_mock()
logger = WandbLogger(save_dir=tmpdir, log_model=True)
logger.experiment.id = "1"
logger.experiment.name = "run_name"
checkpoint_callback = ModelCheckpoint(monitor="step")
trainer = Trainer(
default_root_dir=tmpdir,
logger=logger,
callbacks=[checkpoint_callback],
max_epochs=1,
limit_train_batches=3,
limit_val_batches=1,
)
trainer.fit(model)
calls = wandb.Artifact.call_args_list
assert len(calls) == 1
score = calls[0][1]["metadata"]["score"]
# model checkpoint monitors scalar tensors, but wandb can't serializable them - expect Python scalars in metadata
assert isinstance(score, int) and score == 3
@mock.patch("pytorch_lightning.loggers.wandb.Run", new=mock.Mock)
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
def test_wandb_log_media(wandb, tmpdir):
"""Test that the logger creates the folders and files in the right place."""
wandb.run = None
# test log_text with columns and data
columns = ["input", "label", "prediction"]
data = [["cheese", "english", "english"], ["fromage", "french", "spanish"]]
logger = WandbLogger()
logger.log_text(key="samples", columns=columns, data=data)
wandb.Table.assert_called_once_with(
columns=["input", "label", "prediction"],
data=[["cheese", "english", "english"], ["fromage", "french", "spanish"]],
dataframe=None,
)
wandb.init().log.assert_called_once_with({"samples": wandb.Table()})
# test log_text with dataframe
wandb.Table.reset_mock()
wandb.init().log.reset_mock()
df = 'pandas.DataFrame({"col1": [1, 2], "col2": [3, 4]})' # TODO: incompatible numpy/pandas versions in test env
logger.log_text(key="samples", dataframe=df)
wandb.Table.assert_called_once_with(
columns=None,
data=None,
dataframe=df,
)
wandb.init().log.assert_called_once_with({"samples": wandb.Table()})
# test log_image
wandb.init().log.reset_mock()
logger.log_image(key="samples", images=["1.jpg", "2.jpg"])
wandb.Image.assert_called_with("2.jpg")
wandb.init().log.assert_called_once_with({"samples": [wandb.Image(), wandb.Image()]})
# test log_image with step
wandb.init().log.reset_mock()
logger.log_image(key="samples", images=["1.jpg", "2.jpg"], step=5)
wandb.Image.assert_called_with("2.jpg")
wandb.init().log.assert_called_once_with({"samples": [wandb.Image(), wandb.Image()], "trainer/global_step": 5})
# test log_image with captions
wandb.init().log.reset_mock()
wandb.Image.reset_mock()
logger.log_image(key="samples", images=["1.jpg", "2.jpg"], caption=["caption 1", "caption 2"])
wandb.Image.assert_called_with("2.jpg", caption="caption 2")
wandb.init().log.assert_called_once_with({"samples": [wandb.Image(), wandb.Image()]})
# test log_image without a list
with pytest.raises(TypeError, match="""Expected a list as "images", found <class 'str'>"""):
logger.log_image(key="samples", images="1.jpg")
# test log_image with wrong number of captions
with pytest.raises(ValueError, match="Expected 2 items but only found 1 for caption"):
logger.log_image(key="samples", images=["1.jpg", "2.jpg"], caption=["caption 1"])
# test log_table
wandb.Table.reset_mock()
wandb.init().log.reset_mock()
logger.log_table(key="samples", columns=columns, data=data, dataframe=df, step=5)
wandb.Table.assert_called_once_with(
columns=columns,
data=data,
dataframe=df,
)
wandb.init().log.assert_called_once_with({"samples": wandb.Table(), "trainer/global_step": 5})
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
def test_wandb_logger_offline_log_model(wandb, tmpdir):
"""Test that log_model=True raises an error in offline mode."""
with pytest.raises(MisconfigurationException, match="checkpoints cannot be uploaded in offline mode"):
_ = WandbLogger(save_dir=str(tmpdir), offline=True, log_model=True)
@mock.patch("pytorch_lightning.loggers.wandb.Run", object)
@mock.patch("pytorch_lightning.loggers.wandb.wandb")
def test_wandb_logger_download_artifact(wandb, tmpdir):
"""Test that download_artifact works."""
wandb.run = wandb.init()
logger = WandbLogger()
logger.download_artifact("test_artifact", str(tmpdir), "model", True)
wandb.run.use_artifact.assert_called_once_with("test_artifact")
wandb.run = None
WandbLogger.download_artifact("test_artifact", str(tmpdir), "model", True)
wandb.Api().artifact.assert_called_once_with("test_artifact", type="model")