131 lines
4.3 KiB
Python
131 lines
4.3 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from unittest.mock import MagicMock
|
|
|
|
import pytest
|
|
import torch
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.core.saving import load_hparams_from_yaml
|
|
from pytorch_lightning.loggers import CSVLogger
|
|
from pytorch_lightning.loggers.csv_logs import ExperimentWriter
|
|
from tests_pytorch.helpers.datamodules import ClassifDataModule
|
|
from tests_pytorch.helpers.runif import RunIf
|
|
from tests_pytorch.helpers.simple_models import ClassificationModel
|
|
|
|
|
|
def test_file_logger_automatic_versioning(tmpdir):
|
|
"""Verify that automatic versioning works."""
|
|
|
|
root_dir = tmpdir.mkdir("exp")
|
|
root_dir.mkdir("version_0")
|
|
root_dir.mkdir("version_1")
|
|
|
|
logger = CSVLogger(save_dir=tmpdir, name="exp")
|
|
|
|
assert logger.version == 2
|
|
|
|
|
|
def test_file_logger_manual_versioning(tmpdir):
|
|
"""Verify that manual versioning works."""
|
|
|
|
root_dir = tmpdir.mkdir("exp")
|
|
root_dir.mkdir("version_0")
|
|
root_dir.mkdir("version_1")
|
|
root_dir.mkdir("version_2")
|
|
|
|
logger = CSVLogger(save_dir=tmpdir, name="exp", version=1)
|
|
|
|
assert logger.version == 1
|
|
|
|
|
|
def test_file_logger_named_version(tmpdir):
|
|
"""Verify that manual versioning works for string versions, e.g. '2020-02-05-162402'."""
|
|
|
|
exp_name = "exp"
|
|
tmpdir.mkdir(exp_name)
|
|
expected_version = "2020-02-05-162402"
|
|
|
|
logger = CSVLogger(save_dir=tmpdir, name=exp_name, version=expected_version)
|
|
logger.log_hyperparams({"a": 1, "b": 2})
|
|
logger.save()
|
|
assert logger.version == expected_version
|
|
assert os.listdir(tmpdir / exp_name) == [expected_version]
|
|
assert os.listdir(tmpdir / exp_name / expected_version)
|
|
|
|
|
|
@pytest.mark.parametrize("name", ["", None])
|
|
def test_file_logger_no_name(tmpdir, name):
|
|
"""Verify that None or empty name works."""
|
|
logger = CSVLogger(save_dir=tmpdir, name=name)
|
|
logger.save()
|
|
assert os.path.normpath(logger.root_dir) == tmpdir # use os.path.normpath to handle trailing /
|
|
assert os.listdir(tmpdir / "version_0")
|
|
|
|
|
|
@pytest.mark.parametrize("step_idx", [10, None])
|
|
def test_file_logger_log_metrics(tmpdir, step_idx):
|
|
logger = CSVLogger(tmpdir)
|
|
metrics = {"float": 0.3, "int": 1, "FloatTensor": torch.tensor(0.1), "IntTensor": torch.tensor(1)}
|
|
logger.log_metrics(metrics, step_idx)
|
|
logger.save()
|
|
|
|
path_csv = os.path.join(logger.log_dir, ExperimentWriter.NAME_METRICS_FILE)
|
|
with open(path_csv) as fp:
|
|
lines = fp.readlines()
|
|
assert len(lines) == 2
|
|
assert all(n in lines[0] for n in metrics)
|
|
|
|
|
|
def test_file_logger_log_hyperparams(tmpdir):
|
|
logger = CSVLogger(tmpdir)
|
|
hparams = {
|
|
"float": 0.3,
|
|
"int": 1,
|
|
"string": "abc",
|
|
"bool": True,
|
|
"dict": {"a": {"b": "c"}},
|
|
"list": [1, 2, 3],
|
|
"layer": torch.nn.BatchNorm1d,
|
|
}
|
|
logger.log_hyperparams(hparams)
|
|
logger.save()
|
|
|
|
path_yaml = os.path.join(logger.log_dir, ExperimentWriter.NAME_HPARAMS_FILE)
|
|
params = load_hparams_from_yaml(path_yaml)
|
|
assert all(n in params for n in hparams)
|
|
|
|
|
|
@RunIf(sklearn=True)
|
|
def test_fit_csv_logger(tmpdir):
|
|
dm = ClassifDataModule()
|
|
model = ClassificationModel()
|
|
logger = CSVLogger(save_dir=tmpdir)
|
|
trainer = Trainer(default_root_dir=tmpdir, max_steps=10, logger=logger, log_every_n_steps=1)
|
|
trainer.fit(model, datamodule=dm)
|
|
metrics_file = os.path.join(logger.log_dir, ExperimentWriter.NAME_METRICS_FILE)
|
|
assert os.path.isfile(metrics_file)
|
|
|
|
|
|
def test_flush_n_steps(tmpdir):
|
|
logger = CSVLogger(tmpdir, flush_logs_every_n_steps=2)
|
|
metrics = {"float": 0.3, "int": 1, "FloatTensor": torch.tensor(0.1), "IntTensor": torch.tensor(1)}
|
|
logger.save = MagicMock()
|
|
logger.log_metrics(metrics, step=0)
|
|
|
|
logger.save.assert_not_called()
|
|
logger.log_metrics(metrics, step=1)
|
|
logger.save.assert_called_once()
|