lightning/pytorch_lightning/loggers/wandb.py

117 lines
3.8 KiB
Python

r"""
.. _wandb:
WandbLogger
-------------
"""
import os
from argparse import Namespace
from typing import Optional, List, Dict, Union, Any
import torch.nn as nn
try:
import wandb
from wandb.wandb_run import Run
except ImportError: # pragma: no-cover
raise ImportError('You want to use `wandb` logger which is not installed yet,' # pragma: no-cover
' install it with `pip install wandb`.')
from pytorch_lightning.loggers.base import LightningLoggerBase, rank_zero_only
class WandbLogger(LightningLoggerBase):
"""
Logger for `W&B <https://www.wandb.com/>`_.
Args:
name (str): display name for the run.
save_dir (str): path where data is saved.
offline (bool): run offline (data can be streamed later to wandb servers).
id or version (str): sets the version, mainly used to resume a previous run.
anonymous (bool): enables or explicitly disables anonymous logging.
project (str): the name of the project to which this run will belong.
tags (list of str): tags associated with this run.
log_model (bool): save checkpoints in wandb dir to upload on W&B servers.
Example
--------
.. code-block:: python
from pytorch_lightning.loggers import WandbLogger
from pytorch_lightning import Trainer
wandb_logger = WandbLogger()
trainer = Trainer(logger=wandb_logger)
"""
def __init__(self, name: Optional[str] = None, save_dir: Optional[str] = None,
offline: bool = False, id: Optional[str] = None, anonymous: bool = False,
version: Optional[str] = None, project: Optional[str] = None,
tags: Optional[List[str]] = None, log_model: bool = False,
experiment=None, entity=None):
super().__init__()
self._name = name
self._save_dir = save_dir
self._anonymous = 'allow' if anonymous else None
self._id = version or id
self._tags = tags
self._project = project
self._experiment = experiment
self._offline = offline
self._entity = entity
self._log_model = log_model
def __getstate__(self):
state = self.__dict__.copy()
# cannot be pickled
state['_experiment'] = None
# args needed to reload correct experiment
state['_id'] = self.experiment.id
return state
@property
def experiment(self) -> Run:
r"""
Actual wandb object. To use wandb features do the following.
Example::
self.logger.experiment.some_wandb_function()
"""
if self._experiment is None:
if self._offline:
os.environ['WANDB_MODE'] = 'dryrun'
self._experiment = wandb.init(
name=self._name, dir=self._save_dir, project=self._project, anonymous=self._anonymous,
id=self._id, resume='allow', tags=self._tags, entity=self._entity)
# save checkpoints in wandb dir to upload on W&B servers
if self._log_model:
self.save_dir = self._experiment.dir
return self._experiment
def watch(self, model: nn.Module, log: str = 'gradients', log_freq: int = 100):
wandb.watch(model, log=log, log_freq=log_freq)
@rank_zero_only
def log_hyperparams(self, params: Union[Dict[str, Any], Namespace]) -> None:
params = self._convert_params(params)
self.experiment.config.update(params)
@rank_zero_only
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
if step is not None:
metrics['global_step'] = step
self.experiment.log(metrics)
@property
def name(self) -> str:
return self.experiment.project_name()
@property
def version(self) -> str:
return self.experiment.id