lightning/tests/trainer/test_trainer.py

828 lines
29 KiB
Python

import glob
import math
import os
import types
from argparse import Namespace
import pytest
import torch
import tests.base.utils as tutils
from pytorch_lightning import Callback, LightningModule
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.core.lightning import CHECKPOINT_KEY_MODULE_ARGS
from pytorch_lightning.core.saving import load_hparams_from_tags_csv, load_hparams_from_yaml, save_hparams_to_tags_csv
from pytorch_lightning.loggers import TensorBoardLogger
from pytorch_lightning.trainer.logging import TrainerLoggingMixin
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from tests.base import EvalModelTemplate
def test_no_val_module(tmpdir):
"""Tests use case where trainer saves the model, and user loads it from tags independently."""
model = EvalModelTemplate()
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
trainer = Trainer(
max_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(tmpdir)
)
# fit model
result = trainer.fit(model)
# training complete
assert result == 1, 'amp + ddp model failed to complete'
# save model
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
trainer.save_checkpoint(new_weights_path)
# assert ckpt has hparams
ckpt = torch.load(new_weights_path)
assert CHECKPOINT_KEY_MODULE_ARGS in ckpt.keys(), 'module_arguments missing from checkpoints'
# load new model
hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
hparams_path = os.path.join(hparams_path, 'hparams.yaml')
model_2 = EvalModelTemplate.load_from_checkpoint(
checkpoint_path=new_weights_path,
hparams_file=hparams_path
)
model_2.eval()
def test_no_val_end_module(tmpdir):
"""Tests use case where trainer saves the model, and user loads it from tags independently."""
model = EvalModelTemplate()
# logger file to get meta
logger = tutils.get_default_logger(tmpdir)
# fit model
trainer = Trainer(
max_epochs=1,
logger=logger,
checkpoint_callback=ModelCheckpoint(tmpdir)
)
result = trainer.fit(model)
# traning complete
assert result == 1, 'amp + ddp model failed to complete'
# save model
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
trainer.save_checkpoint(new_weights_path)
# load new model
hparams_path = tutils.get_data_path(logger, path_dir=tmpdir)
hparams_path = os.path.join(hparams_path, 'hparams.yaml')
model_2 = EvalModelTemplate.load_from_checkpoint(
checkpoint_path=new_weights_path,
hparams_file=hparams_path
)
model_2.eval()
def test_gradient_accumulation_scheduling(tmpdir):
"""
Test grad accumulation by the freq of optimizer updates
"""
# test incorrect configs
with pytest.raises(IndexError):
assert Trainer(accumulate_grad_batches={0: 3, 1: 4, 4: 6})
assert Trainer(accumulate_grad_batches={-2: 3})
with pytest.raises(TypeError):
assert Trainer(accumulate_grad_batches={})
assert Trainer(accumulate_grad_batches=[[2, 3], [4, 6]])
assert Trainer(accumulate_grad_batches={1: 2, 3.: 4})
assert Trainer(accumulate_grad_batches={1: 2.5, 3: 5})
# test optimizer call freq matches scheduler
def _optimizer_step(self, epoch, batch_idx, optimizer,
optimizer_idx, second_order_closure=None):
# only test the first 12 batches in epoch
if batch_idx < 12:
if epoch == 0:
# reset counter when starting epoch
if batch_idx == 0:
self.prev_called_batch_idx = 0
# use this opportunity to test once
assert self.trainer.accumulate_grad_batches == 1
assert batch_idx == self.prev_called_batch_idx
self.prev_called_batch_idx += 1
elif 1 <= epoch <= 2:
# reset counter when starting epoch
if batch_idx == 1:
self.prev_called_batch_idx = 1
# use this opportunity to test once
assert self.trainer.accumulate_grad_batches == 2
assert batch_idx == self.prev_called_batch_idx
self.prev_called_batch_idx += 2
else:
if batch_idx == 3:
self.prev_called_batch_idx = 3
# use this opportunity to test once
assert self.trainer.accumulate_grad_batches == 4
assert batch_idx == self.prev_called_batch_idx
self.prev_called_batch_idx += 3
optimizer.step()
# clear gradients
optimizer.zero_grad()
model = EvalModelTemplate()
schedule = {1: 2, 3: 4}
trainer = Trainer(accumulate_grad_batches=schedule,
train_percent_check=0.1,
val_percent_check=0.1,
max_epochs=2,
default_root_dir=tmpdir)
# for the test
trainer.optimizer_step = _optimizer_step
model.prev_called_batch_idx = 0
trainer.fit(model)
def test_loading_meta_tags(tmpdir):
""" test for backward compatibility to meta_tags.csv """
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
# save tags
logger = tutils.get_default_logger(tmpdir)
logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
logger.log_hyperparams(hparams)
logger.save()
# load hparams
path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir)
hparams_path = os.path.join(path_expt_dir, TensorBoardLogger.NAME_HPARAMS_FILE)
hparams = load_hparams_from_yaml(hparams_path)
# save as legacy meta_tags.csv
tags_path = os.path.join(path_expt_dir, 'meta_tags.csv')
save_hparams_to_tags_csv(tags_path, hparams)
tags = load_hparams_from_tags_csv(tags_path)
assert hparams == tags
def test_loading_yaml(tmpdir):
tutils.reset_seed()
hparams = EvalModelTemplate.get_default_hparams()
# save tags
logger = tutils.get_default_logger(tmpdir)
logger.log_hyperparams(Namespace(some_str='a_str', an_int=1, a_float=2.0))
logger.log_hyperparams(hparams)
logger.save()
# load hparams
path_expt_dir = tutils.get_data_path(logger, path_dir=tmpdir)
hparams_path = os.path.join(path_expt_dir, 'hparams.yaml')
tags = load_hparams_from_yaml(hparams_path)
assert tags['batch_size'] == 32 and tags['hidden_dim'] == 1000
def test_dp_output_reduce():
mixin = TrainerLoggingMixin()
# test identity when we have a single gpu
out = torch.rand(3, 1)
assert mixin.reduce_distributed_output(out, num_gpus=1) is out
# average when we have multiples
assert mixin.reduce_distributed_output(out, num_gpus=2) == out.mean()
# when we have a dict of vals
out = {
'a': out,
'b': {
'c': out
}
}
reduced = mixin.reduce_distributed_output(out, num_gpus=3)
assert reduced['a'] == out['a']
assert reduced['b']['c'] == out['b']['c']
@pytest.mark.parametrize(["save_top_k", "save_last", "file_prefix", "expected_files"], [
pytest.param(-1, False, '', {'epoch=4.ckpt', 'epoch=3.ckpt', 'epoch=2.ckpt', 'epoch=1.ckpt', 'epoch=0.ckpt'},
id="CASE K=-1 (all)"),
pytest.param(1, False, 'test_prefix_', {'test_prefix_epoch=4.ckpt'},
id="CASE K=1 (2.5, epoch 4)"),
pytest.param(2, False, '', {'epoch=4.ckpt', 'epoch=2.ckpt'},
id="CASE K=2 (2.5 epoch 4, 2.8 epoch 2)"),
pytest.param(4, False, '', {'epoch=1.ckpt', 'epoch=4.ckpt', 'epoch=3.ckpt', 'epoch=2.ckpt'},
id="CASE K=4 (save all 4 base)"),
pytest.param(3, False, '', {'epoch=2.ckpt', 'epoch=3.ckpt', 'epoch=4.ckpt'},
id="CASE K=3 (save the 2nd, 3rd, 4th model)"),
pytest.param(1, True, '', {'epoch=4.ckpt', 'last.ckpt'},
id="CASE K=1 (save the 4th model and the last model)"),
])
def test_model_checkpoint_options(tmpdir, save_top_k, save_last, file_prefix, expected_files):
"""Test ModelCheckpoint options."""
def mock_save_function(filepath, *args):
open(filepath, 'a').close()
# simulated losses
losses = [10, 9, 2.8, 5, 2.5]
checkpoint_callback = ModelCheckpoint(tmpdir, save_top_k=save_top_k, save_last=save_last,
prefix=file_prefix, verbose=1)
checkpoint_callback.save_function = mock_save_function
trainer = Trainer()
# emulate callback's calls during the training
for i, loss in enumerate(losses):
trainer.current_epoch = i
trainer.callback_metrics = {'val_loss': loss}
checkpoint_callback.on_validation_end(trainer, trainer.get_model())
file_lists = set(os.listdir(tmpdir))
assert len(file_lists) == len(expected_files), \
"Should save %i models when save_top_k=%i" % (len(expected_files), save_top_k)
# verify correct naming
for fname in expected_files:
assert fname in file_lists
def test_model_checkpoint_only_weights(tmpdir):
"""Tests use case where ModelCheckpoint is configured to save only model weights, and
user tries to load checkpoint to resume training.
"""
model = EvalModelTemplate()
trainer = Trainer(
max_epochs=1,
checkpoint_callback=ModelCheckpoint(tmpdir, save_weights_only=True)
)
# fit model
result = trainer.fit(model)
# training complete
assert result == 1, 'training failed to complete'
checkpoint_path = list(trainer.checkpoint_callback.best_k_models.keys())[0]
# assert saved checkpoint has no trainer data
checkpoint = torch.load(checkpoint_path)
assert 'optimizer_states' not in checkpoint, 'checkpoint should contain only model weights'
assert 'lr_schedulers' not in checkpoint, 'checkpoint should contain only model weights'
# assert loading model works when checkpoint has only weights
assert EvalModelTemplate.load_from_checkpoint(checkpoint_path=checkpoint_path)
# directly save model
new_weights_path = os.path.join(tmpdir, 'save_test.ckpt')
trainer.save_checkpoint(new_weights_path, weights_only=True)
# assert saved checkpoint has no trainer data
checkpoint = torch.load(new_weights_path)
assert 'optimizer_states' not in checkpoint, 'checkpoint should contain only model weights'
assert 'lr_schedulers' not in checkpoint, 'checkpoint should contain only model weights'
# assert restoring train state fails
with pytest.raises(KeyError, match='checkpoint contains only the model'):
trainer.restore_training_state(checkpoint)
def test_model_freeze_unfreeze():
model = EvalModelTemplate()
model.freeze()
model.unfreeze()
def test_resume_from_checkpoint_epoch_restored(tmpdir):
"""Verify resuming from checkpoint runs the right number of epochs"""
hparams = EvalModelTemplate.get_default_hparams()
def _new_model():
# Create a model that tracks epochs and batches seen
model = EvalModelTemplate(**hparams)
model.num_epochs_seen = 0
model.num_batches_seen = 0
model.num_on_load_checkpoint_called = 0
def increment_epoch(self):
self.num_epochs_seen += 1
def increment_batch(self, _):
self.num_batches_seen += 1
def increment_on_load_checkpoint(self, _):
self.num_on_load_checkpoint_called += 1
# Bind methods to keep track of epoch numbers, batch numbers it has seen
# as well as number of times it has called on_load_checkpoint()
model.on_epoch_end = types.MethodType(increment_epoch, model)
model.on_batch_start = types.MethodType(increment_batch, model)
model.on_load_checkpoint = types.MethodType(increment_on_load_checkpoint, model)
return model
model = _new_model()
trainer_options = dict(
progress_bar_refresh_rate=0,
max_epochs=2,
train_percent_check=0.65,
val_percent_check=1,
checkpoint_callback=ModelCheckpoint(tmpdir, save_top_k=-1),
default_root_dir=tmpdir,
early_stop_callback=False,
val_check_interval=1.,
)
trainer = Trainer(**trainer_options)
# fit model
trainer.fit(model)
training_batches = trainer.num_training_batches
assert model.num_epochs_seen == 2
assert model.num_batches_seen == training_batches * 2
assert model.num_on_load_checkpoint_called == 0
# Other checkpoints can be uncommented if/when resuming mid-epoch is supported
checkpoints = sorted(glob.glob(os.path.join(trainer.checkpoint_callback.dirpath, '*.ckpt')))
for check in checkpoints:
next_model = _new_model()
state = torch.load(check)
# Resume training
trainer_options['max_epochs'] = 2
new_trainer = Trainer(**trainer_options, resume_from_checkpoint=check)
new_trainer.fit(next_model)
assert state['global_step'] + next_model.num_batches_seen == training_batches * trainer_options['max_epochs']
assert next_model.num_on_load_checkpoint_called == 1
def _init_steps_model():
"""private method for initializing a model with 5% train epochs"""
model = EvalModelTemplate()
# define train epoch to 5% of data
train_percent = 0.5
# get number of samples in 1 epoch
num_train_samples = math.floor(len(model.train_dataloader()) * train_percent)
trainer_options = dict(
train_percent_check=train_percent,
)
return model, trainer_options, num_train_samples
def test_trainer_max_steps_and_epochs(tmpdir):
"""Verify model trains according to specified max steps"""
model, trainer_options, num_train_samples = _init_steps_model()
# define less train steps than epochs
trainer_options.update(
default_root_dir=tmpdir,
max_epochs=3,
max_steps=num_train_samples + 10
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, "Training did not complete"
# check training stopped at max_steps
assert trainer.global_step == trainer.max_steps, "Model did not stop at max_steps"
# define less train epochs than steps
trainer_options.update(
max_epochs=2,
max_steps=trainer_options['max_epochs'] * 2 * num_train_samples
)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, "Training did not complete"
# check training stopped at max_epochs
assert trainer.global_step == num_train_samples * trainer.max_epochs
assert trainer.current_epoch == trainer.max_epochs - 1, "Model did not stop at max_epochs"
def test_trainer_min_steps_and_epochs(tmpdir):
"""Verify model trains according to specified min steps"""
model, trainer_options, num_train_samples = _init_steps_model()
# define callback for stopping the model and default epochs
trainer_options.update(
default_root_dir=tmpdir,
early_stop_callback=EarlyStopping(monitor='val_loss', min_delta=1.0),
val_check_interval=2,
min_epochs=1,
max_epochs=2
)
# define less min steps than 1 epoch
trainer_options['min_steps'] = math.floor(num_train_samples / 2)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, "Training did not complete"
# check model ran for at least min_epochs
assert trainer.global_step >= num_train_samples and \
trainer.current_epoch > 0, "Model did not train for at least min_epochs"
# define less epochs than min_steps
trainer_options['min_steps'] = math.floor(num_train_samples * 1.5)
# fit model
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, "Training did not complete"
# check model ran for at least num_train_samples*1.5
assert trainer.global_step >= math.floor(num_train_samples * 1.5) and \
trainer.current_epoch > 0, "Model did not train for at least min_steps"
def test_benchmark_option(tmpdir):
"""Verify benchmark option."""
model = EvalModelTemplate()
model.val_dataloader = model.val_dataloader__multiple
# verify torch.backends.cudnn.benchmark is not turned on
assert not torch.backends.cudnn.benchmark
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_epochs=1,
benchmark=True,
)
result = trainer.fit(model)
# verify training completed
assert result == 1
# verify torch.backends.cudnn.benchmark is not turned off
assert torch.backends.cudnn.benchmark
def test_testpass_overrides(tmpdir):
# todo: check duplicated tests against trainer_checks
hparams = EvalModelTemplate.get_default_hparams()
# Misconfig when neither test_step or test_end is implemented
with pytest.raises(MisconfigurationException, match='.*not implement `test_dataloader`.*'):
model = EvalModelTemplate(**hparams)
model.test_dataloader = LightningModule.test_dataloader
Trainer().test(model)
# Misconfig when neither test_step or test_end is implemented
with pytest.raises(MisconfigurationException):
model = EvalModelTemplate(**hparams)
model.test_step = LightningModule.test_step
Trainer().test(model)
# No exceptions when one or both of test_step or test_end are implemented
model = EvalModelTemplate(**hparams)
model.test_step_end = LightningModule.test_step_end
Trainer().test(model)
model = EvalModelTemplate(**hparams)
Trainer().test(model)
def test_disabled_validation():
"""Verify that `val_percent_check=0` disables the validation loop unless `fast_dev_run=True`."""
class CurrentModel(EvalModelTemplate):
validation_step_invoked = False
validation_epoch_end_invoked = False
def validation_step(self, *args, **kwargs):
self.validation_step_invoked = True
return super().validation_step(*args, **kwargs)
def validation_epoch_end(self, *args, **kwargs):
self.validation_epoch_end_invoked = True
return super().validation_epoch_end(*args, **kwargs)
hparams = EvalModelTemplate.get_default_hparams()
model = CurrentModel(**hparams)
trainer_options = dict(
progress_bar_refresh_rate=0,
max_epochs=2,
train_percent_check=0.4,
val_percent_check=0.0,
fast_dev_run=False,
)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
# check that val_percent_check=0 turns off validation
assert result == 1, 'training failed to complete'
assert trainer.current_epoch == 1
assert not model.validation_step_invoked, \
'`validation_step` should not run when `val_percent_check=0`'
assert not model.validation_epoch_end_invoked, \
'`validation_epoch_end` should not run when `val_percent_check=0`'
# check that val_percent_check has no influence when fast_dev_run is turned on
model = CurrentModel(**hparams)
trainer_options.update(fast_dev_run=True)
trainer = Trainer(**trainer_options)
result = trainer.fit(model)
assert result == 1, 'training failed to complete'
assert trainer.current_epoch == 0
assert model.validation_step_invoked, \
'did not run `validation_step` with `fast_dev_run=True`'
assert model.validation_epoch_end_invoked, \
'did not run `validation_epoch_end` with `fast_dev_run=True`'
def test_nan_loss_detection(tmpdir):
class CurrentModel(EvalModelTemplate):
test_batch_inf_loss = 8
def training_step(self, batch, batch_idx, optimizer_idx=None):
output = super().training_step(batch, batch_idx, optimizer_idx)
if batch_idx == self.test_batch_inf_loss:
if isinstance(output, dict):
output['loss'] *= torch.tensor(math.inf) # make loss infinite
else:
output /= 0
return output
model = CurrentModel()
# fit model
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=(model.test_batch_inf_loss + 1),
terminate_on_nan=True
)
with pytest.raises(ValueError, match=r'.*The loss returned in `training_step` is nan or inf.*'):
trainer.fit(model)
assert trainer.global_step == model.test_step_inf_loss
for param in model.parameters():
assert torch.isfinite(param).all()
def test_nan_params_detection(tmpdir):
class CurrentModel(EvalModelTemplate):
test_batch_nan = 8
def on_after_backward(self):
if self.global_step == self.test_batch_nan:
# simulate parameter that became nan
torch.nn.init.constant_(self.c_d1.bias, math.nan)
model = CurrentModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=(model.test_batch_nan + 1),
terminate_on_nan=True
)
with pytest.raises(ValueError, match=r'.*Detected nan and/or inf values in `c_d1.bias`.*'):
trainer.fit(model)
assert trainer.global_step == model.test_batch_nan
# after aborting the training loop, model still has nan-valued params
params = torch.cat([param.view(-1) for param in model.parameters()])
assert not torch.isfinite(params).all()
def test_trainer_interrupted_flag(tmpdir):
"""Test the flag denoting that a user interrupted training."""
model = EvalModelTemplate()
class InterruptCallback(Callback):
def __init__(self):
super().__init__()
def on_batch_start(self, trainer, pl_module):
raise KeyboardInterrupt
interrupt_callback = InterruptCallback()
trainer = Trainer(
callbacks=[interrupt_callback],
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2,
progress_bar_refresh_rate=0,
logger=False,
default_root_dir=tmpdir,
)
assert not trainer.interrupted
trainer.fit(model)
assert trainer.interrupted
def test_gradient_clipping(tmpdir):
"""
Test gradient clipping
"""
model = EvalModelTemplate()
# test that gradient is clipped correctly
def _optimizer_step(*args, **kwargs):
parameters = model.parameters()
grad_norm = torch.norm(torch.stack([torch.norm(p.grad.detach(), 2) for p in parameters]), 2)
assert (grad_norm - 1.0).abs() < 0.01, "Gradient norm != 1.0: {grad_norm}".format(grad_norm=grad_norm)
trainer = Trainer(max_steps=1,
max_epochs=1,
gradient_clip_val=1.0,
default_root_dir=tmpdir)
# for the test
model.optimizer_step = _optimizer_step
model.prev_called_batch_idx = 0
trainer.fit(model)
def test_gpu_choice(tmpdir):
trainer_options = dict(
default_save_path=tmpdir,
)
# Only run if CUDA is available
if not torch.cuda.is_available():
return
num_gpus = torch.cuda.device_count()
Trainer(**trainer_options, gpus=num_gpus, auto_select_gpus=True)
with pytest.raises(RuntimeError, match=r'.*No GPUs available.*'):
Trainer(**trainer_options, gpus=num_gpus + 1, auto_select_gpus=True)
@pytest.mark.parametrize("trainer_kwargs,expected", [
pytest.param(
dict(distributed_backend=None, gpus=None),
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, single_gpu=False, num_processes=1)
),
pytest.param(
dict(distributed_backend="dp", gpus=None),
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, single_gpu=False, num_processes=1)
),
pytest.param(
dict(distributed_backend="dp", gpus=None),
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, single_gpu=False, num_processes=1)
),
pytest.param(
dict(distributed_backend="ddp", gpus=None),
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, single_gpu=False, num_processes=1)
),
pytest.param(
dict(distributed_backend="ddp", num_processes=2, gpus=None),
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=0, on_gpu=False, single_gpu=False, num_processes=2)
),
pytest.param(
dict(distributed_backend="ddp", num_nodes=2, gpus=None),
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=0, on_gpu=False, single_gpu=False, num_processes=1)
),
pytest.param(
dict(distributed_backend="ddp_cpu", num_processes=2, gpus=None),
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=0, on_gpu=False, single_gpu=False, num_processes=2)
),
pytest.param(
dict(distributed_backend="ddp2", gpus=None),
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=0, on_gpu=False, single_gpu=False, num_processes=1)
),
pytest.param(
dict(distributed_backend=None, gpus=1),
dict(use_dp=False, use_ddp=False, use_ddp2=False, num_gpus=1, on_gpu=True, single_gpu=True, num_processes=1),
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
),
pytest.param(
dict(distributed_backend="dp", gpus=1),
dict(use_dp=True, use_ddp=False, use_ddp2=False, num_gpus=1, on_gpu=True, single_gpu=True, num_processes=1),
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
),
pytest.param(
dict(distributed_backend="ddp", gpus=1),
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=1, on_gpu=True, single_gpu=True, num_processes=1),
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
),
pytest.param(
dict(distributed_backend="ddp_cpu", num_processes=2, gpus=1),
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=0, on_gpu=False, single_gpu=False, num_processes=2),
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
),
pytest.param(
dict(distributed_backend="ddp2", gpus=1),
dict(use_dp=False, use_ddp=False, use_ddp2=True, num_gpus=1, on_gpu=True, single_gpu=False, num_processes=1),
marks=[pytest.mark.skipif(torch.cuda.device_count() == 0, reason="GPU needed")]
),
pytest.param(
dict(distributed_backend=None, gpus=2),
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=2, on_gpu=True, single_gpu=False, num_processes=2),
marks=[pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Multiple GPUs needed")]
),
pytest.param(
dict(distributed_backend="dp", gpus=2),
dict(use_dp=True, use_ddp=False, use_ddp2=False, num_gpus=2, on_gpu=True, single_gpu=False, num_processes=1),
marks=[pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Multiple GPUs needed")]
),
pytest.param(
dict(distributed_backend="ddp", gpus=2),
dict(use_dp=False, use_ddp=True, use_ddp2=False, num_gpus=2, on_gpu=True, single_gpu=False, num_processes=2),
marks=[pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Multiple GPUs needed")]
),
pytest.param(
dict(distributed_backend="ddp2", gpus=2),
dict(use_dp=False, use_ddp=False, use_ddp2=True, num_gpus=2, on_gpu=True, single_gpu=False, num_processes=1),
marks=[pytest.mark.skipif(torch.cuda.device_count() < 2, reason="Multiple GPUs needed")]
),
])
def test_trainer_config(trainer_kwargs, expected):
trainer = Trainer(**trainer_kwargs)
assert trainer.use_dp is expected["use_dp"]
assert trainer.use_ddp is expected["use_ddp"]
assert trainer.use_ddp2 is expected["use_ddp2"]
assert trainer.num_gpus == expected["num_gpus"]
assert trainer.on_gpu is expected["on_gpu"]
assert trainer.single_gpu is expected["single_gpu"]
assert trainer.num_processes == expected["num_processes"]
def test_trainer_subclassing():
model = EvalModelTemplate()
# First way of pulling out args from signature is to list them
class TrainerSubclass(Trainer):
def __init__(self, custom_arg, *args, custom_kwarg='test', **kwargs):
super().__init__(*args, **kwargs)
self.custom_arg = custom_arg
self.custom_kwarg = custom_kwarg
trainer = TrainerSubclass(123, custom_kwarg='custom', fast_dev_run=True)
result = trainer.fit(model)
assert result == 1
assert trainer.custom_arg == 123
assert trainer.custom_kwarg == 'custom'
assert trainer.fast_dev_run
# Second way is to pop from the dict
# It's a special case because Trainer does not have any positional args
class TrainerSubclass(Trainer):
def __init__(self, **kwargs):
self.custom_arg = kwargs.pop('custom_arg', 0)
self.custom_kwarg = kwargs.pop('custom_kwarg', 'test')
super().__init__(**kwargs)
trainer = TrainerSubclass(custom_kwarg='custom', fast_dev_run=True)
result = trainer.fit(model)
assert result == 1
assert trainer.custom_kwarg == 'custom'
assert trainer.fast_dev_run
# when we pass in an unknown arg, the base class should complain
with pytest.raises(TypeError, match=r"__init__\(\) got an unexpected keyword argument 'abcdefg'"):
TrainerSubclass(abcdefg='unknown_arg')