lightning/tests/trainer/optimization/test_manual_optimization.py

1082 lines
37 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import collections
from copy import deepcopy
from unittest import mock
from unittest.mock import ANY, call, patch
import pytest
import torch
import torch.distributed as torch_distrib
import torch.nn.functional as F
from pytorch_lightning import seed_everything, Trainer
from pytorch_lightning.accelerators import Accelerator
from tests.helpers.boring_model import BoringModel
from tests.helpers.runif import RunIf
class ManualOptModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
opt_a, opt_b = self.optimizers()
# make sure there are no grads
if batch_idx > 0:
assert torch.all(self.layer.weight.grad == 0)
loss_1 = self.step(batch[0])
self.manual_backward(loss_1)
opt_a.step()
opt_a.zero_grad()
assert torch.all(self.layer.weight.grad == 0)
loss_2 = self.step(batch[0])
# ensure we forward the correct params to the optimizer
# without retain_graph we can't do multiple backward passes
self.manual_backward(loss_2, retain_graph=True)
self.manual_backward(loss_2)
assert self.layer.weight.grad is not None
opt_b.step()
opt_b.zero_grad()
assert torch.all(self.layer.weight.grad == 0)
return loss_2
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
return optimizer, optimizer_2
@pytest.mark.parametrize(
"kwargs",
[
{},
pytest.param({"gpus": 1, "precision": 16, "amp_backend": "native"}, marks=RunIf(min_gpus=1)),
pytest.param(
{"gpus": 1, "precision": 16, "amp_backend": "apex", "amp_level": "O2"},
marks=RunIf(amp_apex=True, min_gpus=1),
),
],
)
def test_multiple_optimizers_manual_no_return(tmpdir, kwargs):
apex_optimizer_patches = []
apex_optimizer_steps = []
class TestModel(ManualOptModel):
def training_step(self, batch, batch_idx):
# avoid returning a value
super().training_step(batch, batch_idx)
def training_epoch_end(self, outputs):
# outputs is empty as training_step does not return
# and it is not automatic optimization
assert not outputs
def on_train_start(self):
if kwargs.get("amp_backend") != "apex":
return
# extremely ugly. APEX patches all the native torch optimizers on `_initialize` which we call on
# `ApexMixedPrecisionPlugin.dispatch`. Additionally, their replacement `new_step` functions are locally
# defined so can't even patch those, thus we need to create the mock after APEX has been initialized
nonlocal apex_optimizer_patches, apex_optimizer_steps
for opt in self.trainer.optimizers:
# `amp.scale_loss` will also patch the step to avoid it when gradient overflow happens. avoid it
opt._amp_stash.already_patched = True
patch = mock.patch.object(opt, "step")
apex_optimizer_patches.append(patch)
apex_optimizer_steps.append(patch.start())
def on_train_end(self):
if kwargs.get("amp_backend") == "apex":
for p in apex_optimizer_patches:
p.stop()
model = TestModel()
model.val_dataloader = None
limit_train_batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
enable_model_summary=False,
**kwargs,
)
if kwargs.get("amp_backend") == "native":
# mock the scaler instead of the optimizer step because it can be skipped with NaNs
scaler_step_patch = mock.patch.object(
trainer.precision_plugin.scaler, "step", wraps=trainer.precision_plugin.scaler.step
)
scaler_step = scaler_step_patch.start()
with mock.patch.object(Accelerator, "backward", wraps=trainer.accelerator.backward) as bwd_mock:
trainer.fit(model)
assert bwd_mock.call_count == limit_train_batches * 3
if kwargs.get("amp_backend") == "native":
scaler_step_patch.stop()
assert scaler_step.call_count == len(model.optimizers()) * limit_train_batches
if kwargs.get("amp_backend") == "apex":
assert [s.call_count for s in apex_optimizer_steps] == [len(model.optimizers())] * limit_train_batches
def test_multiple_optimizers_manual_return(tmpdir):
class TestModel(ManualOptModel):
def training_step(self, batch, batch_idx):
super().training_step(batch, batch_idx)
return {"something": "else"}
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert outputs == [{"something": "else"}, {"something": "else"}]
model = TestModel()
model.val_dataloader = None
limit_train_batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
enable_model_summary=False,
)
with mock.patch.object(Accelerator, "backward", wraps=trainer.accelerator.backward) as bwd_mock:
trainer.fit(model)
assert bwd_mock.call_count == limit_train_batches * 3
def test_multiple_optimizers_manual_log(tmpdir):
class TestModel(ManualOptModel):
def training_step(self, batch, batch_idx):
loss_2 = super().training_step(batch, batch_idx)
self.log("a", loss_2, on_epoch=True)
def training_epoch_end(self, outputs) -> None:
assert not outputs
model = TestModel()
model.val_dataloader = None
limit_train_batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
enable_model_summary=False,
)
with mock.patch.object(Accelerator, "backward", wraps=trainer.accelerator.backward) as bwd_mock:
trainer.fit(model)
assert bwd_mock.call_count == limit_train_batches * 3
assert set(trainer.logged_metrics) == {"a_step", "a_epoch"}
@RunIf(min_gpus=1)
def test_multiple_optimizers_manual_native_amp(tmpdir):
model = ManualOptModel()
model.val_dataloader = None
limit_train_batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
enable_model_summary=False,
precision=16,
gpus=1,
)
with mock.patch.object(Accelerator, "backward", wraps=trainer.accelerator.backward) as bwd_mock:
trainer.fit(model)
assert bwd_mock.call_count == limit_train_batches * 3
class ManualOptimizationExtendedModel(BoringModel):
count = 0
called = collections.defaultdict(int)
detach = False
def __init__(self):
super().__init__()
self.automatic_optimization = False
@property
def should_update(self):
return self.count % 2 == 0
def on_train_batch_start(self, batch, batch_idx):
self.called["on_train_batch_start"] += 1
self.weight_before = self.layer.weight.clone()
def training_step(self, batch, batch_idx):
self.called["training_step"] += 1
opt = self.optimizers()
output = self.layer(batch)
loss = self.loss(batch, output)
loss /= loss.clone().detach()
loss *= 0.1
if self.should_update:
self.manual_backward(loss)
opt.step()
opt.zero_grad()
return loss.detach() if self.detach else loss
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.called["on_train_batch_end"] += 1
after_before = self.layer.weight.clone()
if self.should_update:
try:
assert not torch.equal(self.weight_before, after_before), self.count
# todo: specify the possible exception
except Exception:
# TODO: Figure out why 1 every 3 runs, weights don't get updated on count = 4"
pass
else:
try:
assert torch.equal(self.weight_before, after_before)
# todo: specify the possible exception
except Exception:
# almost no diff between before and after
assert torch.abs(torch.sum(self.weight_before) - torch.sum(after_before)).item() < 10e-6
assert torch.all(self.layer.weight.grad == 0)
self.count += 1
def on_train_end(self):
assert self.called["training_step"] == 10
assert self.called["on_train_batch_start"] == 10
assert self.called["on_train_batch_end"] == 10
@RunIf(min_gpus=2)
def test_manual_optimization_and_return_tensor(tmpdir):
"""This test verify that in `manual_optimization` we don't add gradient when the user return loss in
`training_step`"""
model = ManualOptimizationExtendedModel()
model.training_step_end = None
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=10,
limit_test_batches=0,
limit_val_batches=0,
precision=16,
amp_backend="native",
strategy="ddp_spawn",
gpus=2,
)
trainer.fit(model)
@RunIf(min_gpus=1)
def test_manual_optimization_and_accumulated_gradient(tmpdir):
"""This test verify that in `automatic_optimization=False`, step is being called only when we shouldn't
accumulate."""
seed_everything(234)
class ExtendedModel(BoringModel):
count = 1
called = collections.defaultdict(int)
detach = False
def __init__(self):
super().__init__()
self.automatic_optimization = False
@property
def should_update(self):
return self.count % 2 == 0
@property
def should_have_updated(self):
return self.count % 4 == 0
@property
def has_gradient(self):
return self.layer.weight.grad is not None
def on_train_batch_start(self, batch, batch_idx, dataloader_idx):
self.called["on_train_batch_start"] += 1
self.weight_before = self.layer.weight.clone()
def training_step(self, batch, batch_idx):
self.called["training_step"] += 1
opt = self.optimizers()
output = self.layer(batch)
loss = self.loss(batch, output)
loss /= loss.clone().detach()
loss *= 0.1
if self.should_update:
self.manual_backward(loss)
if self.should_have_updated:
opt.step()
opt.zero_grad()
return loss.detach() if self.detach else loss
def on_train_batch_end(self, outputs, batch, batch_idx, dataloader_idx):
self.called["on_train_batch_end"] += 1
after_before = self.layer.weight.clone()
if self.should_update and self.should_have_updated:
assert not torch.equal(self.weight_before, after_before), self.count
assert torch.all(self.layer.weight.grad == 0)
else:
assert torch.equal(self.weight_before, after_before)
if self.count > 1:
if self.count % 4 == 1:
assert torch.all(self.layer.weight.grad == 0)
else:
assert torch.sum(self.layer.weight.grad) != 0
self.count += 1
def on_train_epoch_end(self, *_, **__):
assert self.called["training_step"] == 20
assert self.called["on_train_batch_start"] == 20
assert self.called["on_train_batch_end"] == 20
model = ExtendedModel()
model.training_step_end = None
model.training_epoch_end = None
trainer = Trainer(
max_epochs=1,
default_root_dir=tmpdir,
limit_train_batches=20,
limit_test_batches=0,
limit_val_batches=0,
precision=16,
amp_backend="native",
gpus=1,
)
trainer.fit(model)
@RunIf(min_gpus=1)
def test_multiple_optimizers_step(tmpdir):
"""Tests that `step` works with several optimizers."""
class TestModel(ManualOptModel):
called = False
def on_before_optimizer_step(self, *args):
self.called = True
norm = torch.nn.utils.clip_grad_norm_(self.parameters(), 2)
if not (torch.isinf(norm) or torch.isnan(norm)):
assert norm.item() < 100, norm.item()
def training_step(self, batch, batch_idx):
# manual
opt_a, opt_b = self.optimizers()
x = batch[0]
loss_1 = self(x)
loss_1 = self.loss(loss_1, loss_1)
# make sure there are no grads
if self.layer.weight.grad is not None:
assert torch.all(self.layer.weight.grad == 0)
self.manual_backward(loss_1)
opt_a.step()
# fake discriminator
loss_2 = self(x)
loss_2 = self.loss(loss_2, loss_2)
# ensure we forward the correct params to the optimizer
# without retain_graph we can't do multiple backward passes
self.manual_backward(loss_2, retain_graph=True)
self.manual_backward(loss_2, retain_graph=True)
assert self.layer.weight.grad is not None
opt_b.step()
opt_b.zero_grad()
return {"loss1": loss_1.detach(), "loss2": loss_2.detach()}
def training_epoch_end(self, outputs) -> None:
# outputs should be an array with an entry per optimizer
assert len(outputs) == 2
model = TestModel()
model.val_dataloader = None
limit_train_batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
enable_model_summary=False,
precision=16,
amp_backend="native",
gpus=1,
)
with mock.patch.object(Accelerator, "backward", wraps=trainer.accelerator.backward) as bwd_mock:
trainer.fit(model)
assert bwd_mock.call_count == limit_train_batches * 3
assert model.called
def test_step_with_optimizer_closure(tmpdir):
"""Tests that `step` works with optimizer_closure."""
class TestModel(BoringModel):
_losses = []
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
# make sure there are no grads
if self.layer.weight.grad is not None:
assert torch.all(self.layer.weight.grad == 0)
opt = self.optimizers()
def compute_loss():
x = batch[0]
x = F.dropout(x, 0.1)
predictions = self(x)
predictions = F.dropout(predictions, 0.1)
loss = self.loss(None, predictions)
return loss
def optimizer_closure():
# emulate bayesian optimization.
num_backward = 2
losses = []
for backward_idx in range(num_backward):
loss = compute_loss()
losses.append(loss)
retain_graph = (num_backward - 1) != backward_idx
self.manual_backward(loss, retain_graph=retain_graph)
# emulate MC dropout training
loss = torch.stack(losses).mean()
self._losses.append(loss)
self.log("train_loss", loss, on_step=True, prog_bar=True, on_epoch=True)
assert losses[0] != losses[1]
weight_before = self.layer.weight.clone()
opt.step(closure=optimizer_closure)
opt.zero_grad()
weight_after = self.layer.weight.clone()
assert not torch.equal(weight_before, weight_after)
def configure_optimizers(self):
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
model = TestModel()
model.val_dataloader = None
model.training_epoch_end = None
limit_train_batches = 2
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
)
with mock.patch.object(Accelerator, "backward", wraps=trainer.accelerator.backward) as bwd_mock:
trainer.fit(model)
assert bwd_mock.call_count == limit_train_batches * 2
assert trainer.progress_bar_metrics["train_loss_step"] == model._losses[-1]
assert trainer.progress_bar_metrics["train_loss_epoch"] == torch.stack(model._losses).mean()
def test_step_with_optimizer_closure_and_accumulated_grad(tmpdir):
"""Tests that `step` works with optimizer_closure and accumulated_grad."""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
# manual
opt = self.optimizers()
x = batch[0]
loss_1 = self(x)
loss_1 = self.loss(loss_1, loss_1)
def optimizer_closure():
# emulate bayesian optimization.
num_backward = 1
for backward_idx in range(num_backward + 1):
retain_graph = num_backward != backward_idx
self.manual_backward(loss_1, retain_graph=retain_graph)
weight_before = self.layer.weight.clone()
opt.step(closure=optimizer_closure)
weight_after = self.layer.weight.clone()
if not self.trainer.fit_loop._should_accumulate():
assert not torch.equal(weight_before, weight_after)
else:
assert self.layer.weight.grad is not None
def configure_optimizers(self):
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
model = TestModel()
model.val_dataloader = None
model.training_epoch_end = None
limit_train_batches = 4
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
)
with mock.patch.object(Accelerator, "backward", wraps=trainer.accelerator.backward) as bwd_mock:
trainer.fit(model)
assert bwd_mock.call_count == limit_train_batches * 2
@patch("torch.optim.SGD.step")
def test_step_with_optimizer_closure_and_extra_arguments(step_mock, tmpdir):
"""Tests that `step` works with optimizer_closure and extra arguments."""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def on_train_start(self) -> None:
step_mock.reset_mock()
def training_step(self, batch, batch_idx):
# manual
opt = self.optimizers()
x = batch[0]
loss_1 = self(x)
loss_1 = self.loss(loss_1, loss_1)
def optimizer_closure():
# emulate bayesian optimization.
num_backward = 1
for backward_idx in range(num_backward + 1):
retain_graph = num_backward != backward_idx
self.manual_backward(loss_1, retain_graph=retain_graph)
opt.step(closure=optimizer_closure)
opt.zero_grad()
def configure_optimizers(self):
return torch.optim.SGD(self.layer.parameters(), lr=0.1)
model = TestModel()
model.val_dataloader = None
model.training_epoch_end = None
limit_train_batches = 4
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
)
trainer.fit(model)
assert step_mock.mock_calls == [call(closure=ANY) for _ in range(limit_train_batches)]
@patch("torch.optim.Adam.step")
@patch("torch.optim.SGD.step")
def test_step_with_optimizer_closure_with_different_frequencies(mock_sgd_step, mock_adam_step, tmpdir):
"""Tests that `step` works with optimizer_closure and different accumulated_gradient frequency."""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def on_train_start(self) -> None:
mock_sgd_step.reset_mock()
mock_adam_step.reset_mock()
def training_step(self, batch, batch_idx):
# emulate gans training
opt_gen, opt_dis = self.optimizers()
# Note: Be careful, don't log on the same key in self.log in both closure
# as they will be aggregated together on epoch_end
def compute_loss():
x = batch[0]
x = F.dropout(x, 0.1)
predictions = self(x)
predictions = F.dropout(predictions, 0.1)
loss = self.loss(None, predictions)
return loss
def gen_closure():
loss_gen = compute_loss()
self.log("loss_gen", loss_gen, on_step=True, on_epoch=True)
self.manual_backward(loss_gen)
def dis_closure():
loss_dis = compute_loss()
self.log("loss_dis", loss_dis, on_step=True, on_epoch=True)
self.manual_backward(loss_dis)
# this will accumulate gradients for 2 batches and then call opt_gen.step()
gen_closure()
if batch_idx % 2 == 0:
opt_gen.step(closure=gen_closure, optim="sgd")
opt_gen.zero_grad()
# update discriminator every 4 baches
# therefore, no gradient accumulation for discriminator
if batch_idx % 4 == 0:
opt_dis.step(closure=dis_closure)
opt_dis.zero_grad()
def configure_optimizers(self):
optimizer_gen = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_dis = torch.optim.Adam(self.layer.parameters(), lr=0.001)
return [optimizer_gen, optimizer_dis]
model = TestModel()
model.val_dataloader = None
model.training_epoch_end = None
limit_train_batches = 8
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
)
trainer.fit(model)
assert mock_sgd_step.mock_calls == [call(closure=ANY, optim="sgd") for _ in range(4)]
assert mock_adam_step.mock_calls == [call(closure=ANY) for _ in range(2)]
class TesManualOptimizationDDPModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def loss_ones(self, batch, prediction):
# An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls
return torch.nn.functional.mse_loss(prediction, torch.ones_like(prediction))
def loss_zeros(self, batch, prediction):
# An arbitrary loss to have a loss that updates the model weights during `Trainer.fit` calls
return torch.nn.functional.mse_loss(prediction, torch.zeros_like(prediction))
def manual_sync_grad(self) -> bool:
torch_distrib.all_reduce(self.layer.weight.grad.data, async_op=False)
return True
def training_step(self, batch, batch_idx):
# emulate gans training
opt_gen, opt_dis = self.optimizers()
# Note: Be careful, don't log on the same key in self.log in both closure
# as they will be aggregated together on epoch_end
world_size = torch_distrib.get_world_size(torch_distrib.group.WORLD)
assert world_size == 2
make_gen_optimizer_step = batch_idx % 2 == 1
make_dis_optimizer_step = batch_idx % 4 == 0
def compute_loss():
x = batch[0]
x = F.dropout(x, 0.1)
predictions = self(x)
predictions = F.dropout(predictions, 0.1)
loss_ones = self.loss_ones(None, predictions)
loss_zeros = self.loss_zeros(None, predictions)
return loss_ones, loss_zeros
def make_manual_backward(loss, retain_graph=False, make_optimizer_step=True):
self.manual_backward(loss, retain_graph=retain_graph)
if make_optimizer_step:
grad_clone = self.layer.weight.grad.clone()
assert self.manual_sync_grad()
self.layer.weight.grad /= world_size
assert torch.equal(self.layer.weight.grad, grad_clone)
def gen_closure():
loss_ones_gen, loss_zeros = compute_loss()
make_manual_backward(loss_ones_gen, retain_graph=True, make_optimizer_step=make_gen_optimizer_step)
make_manual_backward(loss_ones_gen, make_optimizer_step=make_gen_optimizer_step)
def dis_closure():
loss_ones_gen, loss_zeros = compute_loss()
make_manual_backward(loss_ones_gen, retain_graph=True, make_optimizer_step=make_dis_optimizer_step)
make_manual_backward(loss_ones_gen, make_optimizer_step=make_dis_optimizer_step)
# this will accumulate gradients for 2 batches and then call opt_gen.step()
if make_gen_optimizer_step:
opt_gen.step(closure=gen_closure)
opt_gen.zero_grad()
# update discriminator every 4 baches
# therefore, no gradient accumulation for discriminator
if make_dis_optimizer_step:
opt_dis.step(closure=dis_closure)
def configure_optimizers(self):
optimizer_gen = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_dis = torch.optim.Adam(self.layer.parameters(), lr=0.001)
return [optimizer_gen, optimizer_dis]
def on_train_start(self):
# this is done here instead of in the calling function due to `spawn`
sgd, adam = self.optimizers()
self.sgd_step_patch = patch.object(sgd, "step", wraps=sgd.step)
self.sgd_step_mock = self.sgd_step_patch.start()
self.adam_step_patch = patch.object(adam, "step", wraps=adam.step)
self.adam_step_mock = self.adam_step_patch.start()
def on_train_end(self):
self.sgd_step_patch.stop()
assert self.sgd_step_mock.call_count == 4
self.adam_step_patch.stop()
assert self.adam_step_mock.call_count == 2
def train_manual_optimization(tmpdir, strategy, model_cls=TesManualOptimizationDDPModel):
seed_everything(42)
model = model_cls()
model_copy = deepcopy(model)
model.val_dataloader = None
model.training_epoch_end = None
limit_train_batches = 8
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=limit_train_batches,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
gpus=2,
strategy=strategy,
)
trainer.fit(model)
for param, param_copy in zip(model.parameters(), model_copy.parameters()):
assert not torch.equal(param.cpu().data, param_copy.data)
@RunIf(min_gpus=2, special=True)
def test_step_with_optimizer_closure_with_different_frequencies_ddp(tmpdir):
"""Tests that `step` works with optimizer_closure and different accumulated_gradient frequency."""
train_manual_optimization(tmpdir, "ddp")
@RunIf(min_gpus=2)
def test_step_with_optimizer_closure_with_different_frequencies_ddp_spawn(tmpdir):
"""Tests that `step` works with optimizer_closure and different accumulated_gradient frequency."""
train_manual_optimization(tmpdir, "ddp_spawn")
class TestManualOptimizationDDPModelToggleModel(TesManualOptimizationDDPModel):
def training_step(self, batch, batch_idx):
# emulate gans training
opt_gen, opt_dis = self.optimizers()
# Note: Be careful, don't log on the same key in self.log in both closure
# as they will be aggregated together on epoch_end
world_size = torch_distrib.get_world_size(torch_distrib.group.WORLD)
assert world_size == 2
make_gen_optimizer_step = batch_idx % 2 == 1
make_dis_optimizer_step = batch_idx % 4 == 0
def compute_loss():
x = batch[0]
x = F.dropout(x, 0.1)
predictions = self(x)
predictions = F.dropout(predictions, 0.1)
loss_ones = self.loss_ones(None, predictions)
loss_zeros = self.loss_zeros(None, predictions)
return loss_ones, loss_zeros
def make_manual_backward(loss, retain_graph=False, make_optimizer_step=True):
self.manual_backward(loss, retain_graph=retain_graph)
if make_optimizer_step:
grad_clone = self.layer.weight.grad.clone()
assert self.manual_sync_grad()
self.layer.weight.grad /= world_size
assert torch.equal(self.layer.weight.grad, grad_clone)
def gen_closure():
loss_ones_gen, loss_zeros = compute_loss()
make_manual_backward(loss_ones_gen, retain_graph=True, make_optimizer_step=make_gen_optimizer_step)
make_manual_backward(loss_ones_gen, make_optimizer_step=make_gen_optimizer_step)
def dis_closure():
loss_ones_gen, loss_zeros = compute_loss()
make_manual_backward(loss_ones_gen, retain_graph=True, make_optimizer_step=make_dis_optimizer_step)
make_manual_backward(loss_ones_gen, make_optimizer_step=make_dis_optimizer_step)
# this will accumulate gradients for 2 batches and then call opt_gen.step()
with opt_gen.toggle_model(sync_grad=make_gen_optimizer_step):
gen_closure()
if make_gen_optimizer_step:
opt_gen.step()
opt_gen.zero_grad()
with opt_dis.toggle_model(sync_grad=make_dis_optimizer_step):
dis_closure()
if make_dis_optimizer_step:
opt_dis.step()
opt_dis.zero_grad()
@RunIf(min_gpus=2, special=True)
def test_step_with_optimizer_closure_with_different_frequencies_ddp_with_toggle_model(tmpdir):
train_manual_optimization(tmpdir, "ddp", model_cls=TestManualOptimizationDDPModelToggleModel)
def test_lr_schedulers(tmpdir):
"""Test `lr_schedulers()` returns the same objects in the same order as `configure_optimizers()` returns."""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
scheduler_1, scheduler_2 = self.lr_schedulers()
assert scheduler_1 is self.scheduler_1
assert scheduler_2 is self.scheduler_2
def configure_optimizers(self):
optimizer_1 = torch.optim.SGD(self.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.parameters(), lr=0.1)
self.scheduler_1 = torch.optim.lr_scheduler.StepLR(optimizer_1, step_size=1)
self.scheduler_2 = torch.optim.lr_scheduler.StepLR(optimizer_2, step_size=1)
return [optimizer_1, optimizer_2], [self.scheduler_1, self.scheduler_2]
model = TestModel()
model.training_epoch_end = None
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=1, limit_val_batches=1, limit_test_batches=1
)
trainer.fit(model)
@pytest.mark.parametrize("scheduler_as_dict", [True, False])
def test_lr_schedulers_reduce_lr_on_plateau(tmpdir, scheduler_as_dict):
class TestModel(BoringModel):
def __init__(self, scheduler_as_dict):
super().__init__()
self.scheduler_as_dict = scheduler_as_dict
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
return {"train_loss": torch.tensor([0.0])}
def training_epoch_end(self, outputs):
scheduler = self.lr_schedulers()
loss = torch.stack([x["train_loss"] for x in outputs]).mean()
scheduler.step(loss)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.parameters(), lr=0.1)
if self.scheduler_as_dict:
scheduler = {
"scheduler": torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer),
"monitor": "train_loss",
}
else:
scheduler = torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer)
return [optimizer], [scheduler]
model = TestModel(scheduler_as_dict=scheduler_as_dict)
trainer = Trainer(
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=1, limit_val_batches=1, limit_test_batches=1
)
if scheduler_as_dict:
with pytest.warns(RuntimeWarning, match="but the keys will be ignored"):
trainer.fit(model)
else:
trainer.fit(model)
def test_lr_scheduler_step_not_called(tmpdir):
"""Test `lr_scheduler.step()` is not called in manual optimization."""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
opt = self.optimizers()
output = self(batch)
loss = self.loss(batch, output)
opt.zero_grad()
self.manual_backward(loss)
opt.step()
model = TestModel()
model.training_step_end = None
model.training_epoch_end = None
trainer = Trainer(max_epochs=1, default_root_dir=tmpdir, fast_dev_run=2)
with patch("torch.optim.lr_scheduler.StepLR.step") as lr_step:
trainer.fit(model)
# If a lr scheduler inherits `torch.optim.lr_scheduler._LRScheduler`,
# `.step()` is called once during its instantiation.
# Thus, the call count should be 1, not 0.
assert lr_step.call_count == 1
@RunIf(min_gpus=1)
@pytest.mark.parametrize("precision", [16, 32])
def test_multiple_optimizers_logging(precision, tmpdir):
"""Tests that metrics are properly being logged."""
class TestModel(BoringModel):
def __init__(self):
super().__init__()
self.automatic_optimization = False
def training_step(self, batch, batch_idx):
# Discriminator.
optimizer_idx = 0
optimizer = self.optimizers()[optimizer_idx]
self.toggle_optimizer(optimizer, optimizer_idx)
loss_d = self.loss(batch, self.layer(batch))
self.log("loss_d", loss_d, prog_bar=True)
optimizer.zero_grad()
self.manual_backward(loss_d)
optimizer.step()
self.untoggle_optimizer(optimizer_idx)
# Generator.
optimizer_idx = 1
optimizer = self.optimizers()[optimizer_idx]
self.toggle_optimizer(optimizer, optimizer_idx)
loss_g = self.loss(batch, self.layer(batch))
self.log("loss_g", loss_g, prog_bar=True)
optimizer.zero_grad()
self.manual_backward(loss_g)
optimizer.step()
self.untoggle_optimizer(optimizer_idx)
def configure_optimizers(self):
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.1)
optimizer_2 = torch.optim.SGD(self.layer.parameters(), lr=0.1)
return optimizer, optimizer_2
model = TestModel()
model.training_epoch_end = None
model.val_dataloader = None
trainer = Trainer(
default_root_dir=tmpdir,
limit_train_batches=2,
limit_val_batches=2,
max_epochs=1,
log_every_n_steps=1,
enable_model_summary=False,
gpus=1,
precision=precision,
)
trainer.fit(model)
assert set(trainer.logged_metrics) == {"loss_d", "loss_g"}
assert set(trainer.progress_bar_metrics) == {"loss_d", "loss_g"}
def test_manual_optimization_training_step_signature(tmpdir):
"""Test that Lightning raises an exception if the training_step signature has an optimier_idx by mistake."""
class ConfusedAutomaticManualModel(ManualOptModel):
def training_step(self, batch, batch_idx, optimizer_idx):
return super().training_step(batch, batch_idx)
model = ConfusedAutomaticManualModel()
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=2)
with pytest.raises(ValueError, match="Your `LightningModule.training_step` signature contains an `optimizer_idx`"):
trainer.fit(model)