lightning/tests/accelerators/test_ddp_spawn.py

84 lines
2.5 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import tests.helpers.pipelines as tpipes
import tests.helpers.utils as tutils
from pytorch_lightning.callbacks import EarlyStopping
from pytorch_lightning.trainer import Trainer
from pytorch_lightning.utilities import memory
from tests.helpers import BoringModel
from tests.helpers.datamodules import ClassifDataModule
from tests.helpers.runif import RunIf
from tests.helpers.simple_models import ClassificationModel
@RunIf(min_gpus=2)
def test_multi_gpu_early_stop_ddp_spawn(tmpdir):
tutils.set_random_main_port()
trainer_options = dict(
default_root_dir=tmpdir,
callbacks=[EarlyStopping(monitor="train_acc")],
max_epochs=50,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
strategy="ddp_spawn",
)
dm = ClassifDataModule()
model = ClassificationModel()
tpipes.run_model_test(trainer_options, model, dm)
@RunIf(min_gpus=2)
def test_multi_gpu_model_ddp_spawn(tmpdir):
tutils.set_random_main_port()
trainer_options = dict(
default_root_dir=tmpdir,
max_epochs=1,
limit_train_batches=10,
limit_val_batches=10,
gpus=[0, 1],
strategy="ddp_spawn",
enable_progress_bar=False,
)
model = BoringModel()
tpipes.run_model_test(trainer_options, model)
# test memory helper functions
memory.get_memory_profile("min_max")
@RunIf(min_gpus=2)
def test_ddp_all_dataloaders_passed_to_fit(tmpdir):
"""Make sure DDP works with dataloaders passed to fit()"""
tutils.set_random_main_port()
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
enable_progress_bar=False,
max_epochs=1,
limit_train_batches=0.2,
limit_val_batches=0.2,
gpus=[0, 1],
strategy="ddp_spawn",
)
trainer.fit(model, train_dataloaders=model.train_dataloader(), val_dataloaders=model.val_dataloader())
assert trainer.state.finished, "DDP doesn't work with dataloaders passed to fit()."