lightning/tests/callbacks/test_callbacks.py

285 lines
10 KiB
Python

from pathlib import Path
import pytest
import tests.base.utils as tutils
from pytorch_lightning import Callback
from pytorch_lightning import Trainer, LightningModule
from pytorch_lightning.callbacks import EarlyStopping, ModelCheckpoint
from pytorch_lightning.loggers import TensorBoardLogger
from tests.base import EvalModelTemplate
def test_trainer_callback_system(tmpdir):
"""Test the callback system."""
hparams = EvalModelTemplate.get_default_hparams()
model = EvalModelTemplate(**hparams)
def _check_args(trainer, pl_module):
assert isinstance(trainer, Trainer)
assert isinstance(pl_module, LightningModule)
class TestCallback(Callback):
def __init__(self):
super().__init__()
self.on_init_start_called = False
self.on_init_end_called = False
self.on_sanity_check_start_called = False
self.on_sanity_check_end_called = False
self.on_epoch_start_called = False
self.on_epoch_end_called = False
self.on_batch_start_called = False
self.on_batch_end_called = False
self.on_validation_batch_start_called = False
self.on_validation_batch_end_called = False
self.on_test_batch_start_called = False
self.on_test_batch_end_called = False
self.on_train_start_called = False
self.on_train_end_called = False
self.on_validation_start_called = False
self.on_validation_end_called = False
self.on_test_start_called = False
self.on_test_end_called = False
def on_init_start(self, trainer):
assert isinstance(trainer, Trainer)
self.on_init_start_called = True
def on_init_end(self, trainer):
assert isinstance(trainer, Trainer)
self.on_init_end_called = True
def on_sanity_check_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_sanity_check_start_called = True
def on_sanity_check_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_sanity_check_end_called = True
def on_epoch_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_epoch_start_called = True
def on_epoch_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_epoch_end_called = True
def on_batch_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_batch_start_called = True
def on_batch_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_batch_end_called = True
def on_validation_batch_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_validation_batch_start_called = True
def on_validation_batch_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_validation_batch_end_called = True
def on_test_batch_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_test_batch_start_called = True
def on_test_batch_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_test_batch_end_called = True
def on_train_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_train_start_called = True
def on_train_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_train_end_called = True
def on_validation_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_validation_start_called = True
def on_validation_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_validation_end_called = True
def on_test_start(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_test_start_called = True
def on_test_end(self, trainer, pl_module):
_check_args(trainer, pl_module)
self.on_test_end_called = True
test_callback = TestCallback()
trainer_options = dict(
callbacks=[test_callback],
max_epochs=1,
val_percent_check=0.1,
train_percent_check=0.2,
progress_bar_refresh_rate=0,
)
assert not test_callback.on_init_start_called
assert not test_callback.on_init_end_called
assert not test_callback.on_sanity_check_start_called
assert not test_callback.on_sanity_check_end_called
assert not test_callback.on_epoch_start_called
assert not test_callback.on_epoch_start_called
assert not test_callback.on_batch_start_called
assert not test_callback.on_batch_end_called
assert not test_callback.on_validation_batch_start_called
assert not test_callback.on_validation_batch_end_called
assert not test_callback.on_test_batch_start_called
assert not test_callback.on_test_batch_end_called
assert not test_callback.on_train_start_called
assert not test_callback.on_train_end_called
assert not test_callback.on_validation_start_called
assert not test_callback.on_validation_end_called
assert not test_callback.on_test_start_called
assert not test_callback.on_test_end_called
# fit model
trainer = Trainer(**trainer_options)
assert trainer.callbacks[0] == test_callback
assert test_callback.on_init_start_called
assert test_callback.on_init_end_called
assert not test_callback.on_sanity_check_start_called
assert not test_callback.on_sanity_check_end_called
assert not test_callback.on_epoch_start_called
assert not test_callback.on_epoch_start_called
assert not test_callback.on_batch_start_called
assert not test_callback.on_batch_end_called
assert not test_callback.on_validation_batch_start_called
assert not test_callback.on_validation_batch_end_called
assert not test_callback.on_test_batch_start_called
assert not test_callback.on_test_batch_end_called
assert not test_callback.on_train_start_called
assert not test_callback.on_train_end_called
assert not test_callback.on_validation_start_called
assert not test_callback.on_validation_end_called
assert not test_callback.on_test_start_called
assert not test_callback.on_test_end_called
trainer.fit(model)
assert test_callback.on_init_start_called
assert test_callback.on_init_end_called
assert test_callback.on_sanity_check_start_called
assert test_callback.on_sanity_check_end_called
assert test_callback.on_epoch_start_called
assert test_callback.on_epoch_start_called
assert test_callback.on_batch_start_called
assert test_callback.on_batch_end_called
assert test_callback.on_validation_batch_start_called
assert test_callback.on_validation_batch_end_called
assert test_callback.on_train_start_called
assert test_callback.on_train_end_called
assert test_callback.on_validation_start_called
assert test_callback.on_validation_end_called
assert not test_callback.on_test_batch_start_called
assert not test_callback.on_test_batch_end_called
assert not test_callback.on_test_start_called
assert not test_callback.on_test_end_called
test_callback = TestCallback()
trainer_options.update(callbacks=[test_callback])
trainer = Trainer(**trainer_options)
trainer.test(model)
assert test_callback.on_test_batch_start_called
assert test_callback.on_test_batch_end_called
assert test_callback.on_test_start_called
assert test_callback.on_test_end_called
assert not test_callback.on_validation_start_called
assert not test_callback.on_validation_end_called
assert not test_callback.on_validation_batch_end_called
assert not test_callback.on_validation_batch_start_called
def test_early_stopping_no_val_step(tmpdir):
"""Test that early stopping callback falls back to training metrics when no validation defined."""
class CurrentModel(EvalModelTemplate):
def training_step(self, *args, **kwargs):
output = super().training_step(*args, **kwargs)
output.update({'my_train_metric': output['loss']}) # could be anything else
return output
model = CurrentModel()
model.validation_step = None
model.val_dataloader = None
stopping = EarlyStopping(monitor='my_train_metric', min_delta=0.1)
trainer = Trainer(
default_root_dir=tmpdir,
early_stop_callback=stopping,
overfit_pct=0.20,
max_epochs=2,
)
result = trainer.fit(model)
assert result == 1, 'training failed to complete'
assert trainer.current_epoch < trainer.max_epochs
def test_pickling(tmpdir):
import pickle
early_stopping = EarlyStopping()
ckpt = ModelCheckpoint(tmpdir)
early_stopping_pickled = pickle.dumps(early_stopping)
ckpt_pickled = pickle.dumps(ckpt)
early_stopping_loaded = pickle.loads(early_stopping_pickled)
ckpt_loaded = pickle.loads(ckpt_pickled)
assert vars(early_stopping) == vars(early_stopping_loaded)
assert vars(ckpt) == vars(ckpt_loaded)
@pytest.mark.parametrize('save_top_k', [-1, 0, 1, 2])
def test_model_checkpoint_with_non_string_input(tmpdir, save_top_k):
""" Test that None in checkpoint callback is valid and that chkp_path is set correctly """
tutils.reset_seed()
model = EvalModelTemplate()
checkpoint = ModelCheckpoint(filepath=None, save_top_k=save_top_k)
trainer = Trainer(default_root_dir=tmpdir,
checkpoint_callback=checkpoint,
overfit_pct=0.20,
max_epochs=2
)
trainer.fit(model)
# These should be different if the dirpath has be overridden
assert trainer.ckpt_path != trainer.default_root_dir
@pytest.mark.parametrize(
'logger_version,expected',
[(None, 'version_0'), (1, 'version_1'), ('awesome', 'awesome')],
)
def test_model_checkpoint_path(tmpdir, logger_version, expected):
"""Test that "version_" prefix is only added when logger's version is an integer"""
tutils.reset_seed()
model = EvalModelTemplate()
logger = TensorBoardLogger(str(tmpdir), version=logger_version)
trainer = Trainer(
default_root_dir=tmpdir,
overfit_pct=0.2,
max_epochs=2,
logger=logger
)
trainer.fit(model)
ckpt_version = Path(trainer.ckpt_path).parent.name
assert ckpt_version == expected