lightning/docs/source/child_modules.rst

86 lines
2.3 KiB
ReStructuredText

.. testsetup:: *
import torch
from pytorch_lightning.trainer.trainer import Trainer
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning.core.lightning import LightningModule
class LitMNIST(LightningModule):
def __init__(self):
super().__init__()
def train_dataloader():
pass
def val_dataloader():
pass
Child Modules
-------------
Research projects tend to test different approaches to the same dataset.
This is very easy to do in Lightning with inheritance.
For example, imagine we now want to train an Autoencoder to use as a feature extractor for MNIST images.
Recall that `LitMNIST` already defines all the dataloading etc... The only things
that change in the `Autoencoder` model are the init, forward, training, validation and test step.
.. testcode::
class Encoder(torch.nn.Module):
pass
class Decoder(torch.nn.Module):
pass
class AutoEncoder(LitMNIST):
def __init__(self):
super().__init__()
self.encoder = Encoder()
self.decoder = Decoder()
def forward(self, x):
generated = self.decoder(x)
def training_step(self, batch, batch_idx):
x, _ = batch
representation = self.encoder(x)
x_hat = self(representation)
loss = MSE(x, x_hat)
return loss
def validation_step(self, batch, batch_idx):
return self._shared_eval(batch, batch_idx, 'val')
def test_step(self, batch, batch_idx):
return self._shared_eval(batch, batch_idx, 'test')
def _shared_eval(self, batch, batch_idx, prefix):
x, y = batch
representation = self.encoder(x)
x_hat = self(representation)
loss = F.nll_loss(logits, y)
return {f'{prefix}_loss': loss}
and we can train this using the same trainer
.. code-block:: python
autoencoder = AutoEncoder()
trainer = Trainer()
trainer.fit(autoencoder)
And remember that the forward method is to define the practical use of a LightningModule.
In this case, we want to use the `AutoEncoder` to extract image representations
.. code-block:: python
some_images = torch.Tensor(32, 1, 28, 28)
representations = autoencoder(some_images)