lightning/examples/app_multi_node/train_fabric.py

42 lines
1.2 KiB
Python

import torch
import lightning as L
from lightning.app.components import FabricMultiNode
from lightning.fabric import Fabric
class FabricPyTorchDistributed(L.LightningWork):
def run(self):
# 1. Prepare the model
model = torch.nn.Sequential(
torch.nn.Linear(1, 1),
torch.nn.ReLU(),
torch.nn.Linear(1, 1),
)
# 2. Create Fabric.
fabric = Fabric(strategy="ddp", precision="16-mixed")
model, optimizer = fabric.setup(model, torch.optim.SGD(model.parameters(), lr=0.01))
criterion = torch.nn.MSELoss()
# 3. Train the model for 1000 steps.
for step in range(1000):
model.zero_grad()
x = torch.tensor([0.8]).to(fabric.device)
target = torch.tensor([1.0]).to(fabric.device)
output = model(x)
loss = criterion(output, target)
print(f"global_rank: {fabric.global_rank} step: {step} loss: {loss}")
fabric.backward(loss)
optimizer.step()
# 8 GPUs: (2 nodes of 4 x v100)
app = L.LightningApp(
FabricMultiNode(
FabricPyTorchDistributed,
cloud_compute=L.CloudCompute("gpu-fast-multi"), # 4 x V100
num_nodes=2,
)
)