lightning/examples
Carlos Mocholí 8c265c5239
Remove the deprecated `pl.utilities.cli` module (#16116)
2022-12-19 23:24:25 +01:00
..
app_argparse Add --app_args support from the CLI (#13625) 2022-07-15 19:12:40 +01:00
app_boring [App] Add status endpoint, enable `ready` (#16075) 2022-12-19 14:10:58 +00:00
app_commands_and_api [App] Enable debugger with LightningApp (#15590) 2022-11-09 20:46:31 +00:00
app_components [App] Reduce import depths and add test (#15330) 2022-10-28 13:57:35 +00:00
app_dag [App] Improve pdb for multiprocessing (#15950) 2022-12-08 13:58:57 +00:00
app_display_name [App] Add display name property to the work (#16095) 2022-12-18 12:54:15 +00:00
app_drive [App] Fix cluster logic (#15383) 2022-10-28 15:35:21 +01:00
app_hpo [App] Reduce import depths and add test (#15330) 2022-10-28 13:57:35 +00:00
app_installation_commands [App] Improve lightning connect experience (#16035) 2022-12-14 17:09:30 +00:00
app_justpy Add JustPy Frontend (#15002) 2022-10-27 11:48:26 -04:00
app_layout [App] Fix cluster logic (#15383) 2022-10-28 15:35:21 +01:00
app_mount ENG-627: Docs for CloudCompute Mount Argument (#15182) 2022-12-07 15:11:52 +00:00
app_multi_node Better check for programmatic lightningignore (#16080) 2022-12-16 09:49:17 +00:00
app_payload [App] Fix cluster logic (#15383) 2022-10-28 15:35:21 +01:00
app_pickle_or_not Add lightning app examples (#13456) 2022-06-30 16:45:15 -04:00
app_server Sample datatype for Serve Component (#15623) 2022-11-10 14:39:36 -05:00
app_server_with_auto_scaler [App] Scale out/in interval for autoscaler (#16093) 2022-12-19 13:49:00 +00:00
app_template_streamlit_ui [App] Remove `SingleProcessRuntime` (#15933) 2022-12-07 23:22:40 +00:00
app_v0 [App] Enable debugger with LightningApp (#15590) 2022-11-09 20:46:31 +00:00
app_works_on_default_machine [App] Enable debugger with LightningApp (#15590) 2022-11-09 20:46:31 +00:00
lite Update Lightning Lite examples (#15599) 2022-11-10 04:16:46 -05:00
pl_basics Remove the deprecated `pl.utilities.cli` module (#16116) 2022-12-19 23:24:25 +01:00
pl_bug_report Update old PL links (#13349) 2022-06-21 16:38:04 +02:00
pl_domain_templates Remove the deprecated `pl.utilities.cli` module (#16116) 2022-12-19 23:24:25 +01:00
pl_fault_tolerant
pl_hpu Remove the deprecated `pl.utilities.cli` module (#16116) 2022-12-19 23:24:25 +01:00
pl_integrations Remove the deprecated `pl.utilities.cli` module (#16116) 2022-12-19 23:24:25 +01:00
pl_ipu
pl_loops minor fix: indent spaces in comment-out (#16076) 2022-12-15 17:44:10 +01:00
pl_servable_module Remove the deprecated `pl.utilities.cli` module (#16116) 2022-12-19 23:24:25 +01:00
README.md Update Lightning Lite examples (#15599) 2022-11-10 04:16:46 -05:00
run_lite_examples.sh Update Lightning Lite examples (#15599) 2022-11-10 04:16:46 -05:00
run_pl_examples.sh Update Lightning Lite examples (#15599) 2022-11-10 04:16:46 -05:00
test_pl_examples.py

README.md

Examples

Our most robust examples showing all sorts of implementations can be found in our sister library Lightning Bolts.


Note that some examples may rely on new features that are only available in the development branch and may be incompatible with any releases. If you see any errors, you might want to consider switching to a version tag you would like to run examples with. For example, if you're using pytorch-lightning==1.6.4 in your environment and seeing issues, run examples of the tag 1.6.4.


Lightning Lite Examples

We show how to accelerate your PyTorch code with Lightning Lite with minimal code changes. You stay in full control of the training loop.


Lightning Trainer Examples

In this folder, we have 2 simple examples that showcase the power of the Lightning Trainer.


Domain Examples

This folder contains older examples. You should instead use the examples in Lightning Bolts for advanced use cases.


Basic Examples

In this folder, we have 1 simple example:


Loop examples

Contains implementations leveraging loop customization to enhance the Trainer with new optimization routines.

  • K-fold Cross Validation Loop: Implementation of cross validation in a loop and special datamodule.
  • Yield Loop: Enables yielding from the training_step like in a Python generator. Useful for automatic optimization with multiple optimizers.