lightning/pytorch_lightning/accelerators/base_backend.py

165 lines
5.2 KiB
Python

import torch
from typing import Any
from pytorch_lightning.utilities.apply_func import move_data_to_device
from pytorch_lightning.utilities import AMPType, rank_zero_warn
from pytorch_lightning.utilities.exceptions import MisconfigurationException
import math
try:
from apex import amp
except ImportError:
amp = None
EPSILON = 1e-6
EPSILON_FP16 = 1e-5
class Accelerator(object):
def __init__(self, trainer):
self.trainer = trainer
def setup(self, model):
pass
def teardown(self):
pass
def barrier(self, name: str = None):
pass
def train_or_test(self):
if self.trainer.testing:
results = self.trainer.run_test()
else:
results = self.trainer.train()
return results
def batch_to_device(self, batch: Any, device: torch.device):
model = self.trainer.get_model()
if model is not None:
return model.transfer_batch_to_device(batch, device)
return move_data_to_device(batch, device)
def training_step_end(self, output):
return output
def test_step_end(self, output):
return output
def validation_step_end(self, output):
return output
def process_dataloader(self, dataloader):
return dataloader
def backward(self, closure_loss, optimizer, opt_idx):
model_ref = self.trainer.get_model()
# scale loss for 16 bit
if self.trainer.precision == 16:
closure_loss = model_ref.amp_scale_loss(
closure_loss,
optimizer,
opt_idx,
amp_backend=self.trainer.amp_backend
)
# enter amp context
if self.trainer.amp_backend == AMPType.APEX:
self.trainer.dev_debugger.track_event('AMP', str(AMPType.APEX))
context = closure_loss
closure_loss = closure_loss.__enter__()
# do backward pass
model_ref.backward(self, closure_loss, optimizer, opt_idx)
# exit amp context
if self.trainer.precision == 16 and self.trainer.amp_backend == AMPType.APEX:
a, b, c = None, None, None
error = context.__exit__(a, b, c)
if error:
rank_zero_warn(a, b, c)
raise Exception('apex unscale error')
# once backward has been applied, release graph
closure_loss = closure_loss.detach()
return closure_loss
def optimizer_step(self, optimizer, batch_idx, opt_idx, lambda_closure):
model_ref = self.trainer.get_model()
is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
native_amp = self.trainer.amp_backend == AMPType.NATIVE
# native amp + lbfgs is a no go right now
if native_amp and is_lbfgs:
raise MisconfigurationException(
'native PyTorch amp and lbfgs are not compatible.'
' To request, please file a Github issue in PyTorch and tag @mcarilli')
# model hook
model_ref.optimizer_step(
self.trainer.current_epoch,
batch_idx,
optimizer,
opt_idx,
lambda_closure,
using_native_amp=native_amp,
using_lbfgs=is_lbfgs
)
# scale when native amp
if native_amp:
self.trainer.scaler.update()
def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx):
model_ref = self.trainer.get_model()
model_ref.optimizer_zero_grad(self.trainer.current_epoch, batch_idx, optimizer, opt_idx)
def clip_gradients(self, optimizer):
if self.trainer.amp_backend == AMPType.NATIVE:
self.trainer.scaler.unscale_(optimizer)
# apply clip gradients
# TODO: separate TPU case from here
self._clip_gradients(optimizer)
def _clip_gradients(self, optimizer):
# this code is a modification of torch.nn.utils.clip_grad_norm_
# with TPU support based on https://github.com/pytorch/xla/blob/master/TROUBLESHOOTING.md
if self.trainer.gradient_clip_val <= 0:
return
model = self.trainer.get_model()
if self.trainer.amp_backend == AMPType.APEX:
parameters = amp.master_params(optimizer)
else:
parameters = model.parameters()
max_norm = float(self.trainer.gradient_clip_val)
norm_type = float(2.0)
if isinstance(parameters, torch.Tensor):
parameters = [parameters]
parameters = list(filter(lambda p: p.grad is not None, parameters))
if norm_type == math.inf:
total_norm = max(p.grad.data.abs().max() for p in parameters)
else:
device = parameters[0].device
out = torch.empty(len(parameters), device=device)
for i, p in enumerate(parameters):
torch.norm(p.grad.data.to(device), norm_type, out=out[i])
total_norm = torch.norm(out, norm_type)
eps = EPSILON_FP16 if self.trainer.precision == 16 else EPSILON
clip_coef = torch.tensor(max_norm, device=device) / (total_norm + eps)
clip_coef = torch.min(clip_coef, torch.ones_like(clip_coef))
for p in parameters:
p.grad.data.mul_(clip_coef.to(p.grad.data.device))
def on_train_epoch_end(self):
pass