23 lines
665 B
Python
23 lines
665 B
Python
from torch.utils.data import DataLoader
|
|
from tests.base.datasets import TrialMNIST
|
|
|
|
|
|
class ModelTemplateUtils:
|
|
|
|
def dataloader(self, train):
|
|
dataset = TrialMNIST(root=self.hparams.data_root, train=train, download=True)
|
|
|
|
loader = DataLoader(
|
|
dataset=dataset,
|
|
batch_size=self.hparams.batch_size,
|
|
shuffle=True
|
|
)
|
|
return loader
|
|
|
|
def get_output_metric(self, output, name):
|
|
if isinstance(output, dict):
|
|
val = output[name]
|
|
else: # if it is 2level deep -> per dataloader and per batch
|
|
val = sum(out[name] for out in output) / len(output)
|
|
return val
|