52 lines
1.5 KiB
Python
52 lines
1.5 KiB
Python
import torch
|
|
from torch.nn import functional as F
|
|
from torch.utils.data import DataLoader
|
|
|
|
import pytorch_lightning as pl
|
|
from tests.base.datasets import TrialMNIST
|
|
|
|
|
|
# from test_models import assert_ok_test_acc, load_model, \
|
|
# clear_save_dir, get_default_testtube_logger, get_default_hparams, init_save_dir, \
|
|
# init_checkpoint_callback, reset_seed, set_random_master_port
|
|
|
|
|
|
class CoolModel(pl.LightningModule):
|
|
|
|
def __init(self):
|
|
super().__init__()
|
|
# not the best model...
|
|
self.l1 = torch.nn.Linear(28 * 28, 10)
|
|
|
|
def forward(self, x):
|
|
return torch.relu(self.l1(x))
|
|
|
|
def my_loss(self, y_hat, y):
|
|
return F.cross_entropy(y_hat, y)
|
|
|
|
def training_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
return {'training_loss': self.my_loss(y_hat, y)}
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
x, y = batch
|
|
y_hat = self(x)
|
|
return {'val_loss': self.my_loss(y_hat, y)}
|
|
|
|
def validation_epoch_end(self, outputs):
|
|
avg_loss = torch.stack([x for x in outputs['val_loss']]).mean()
|
|
return avg_loss
|
|
|
|
def configure_optimizers(self):
|
|
return [torch.optim.Adam(self.parameters(), lr=0.02)]
|
|
|
|
def train_dataloader(self):
|
|
return DataLoader(TrialMNIST(train=True, num_samples=100), batch_size=16)
|
|
|
|
def val_dataloader(self):
|
|
return DataLoader(TrialMNIST(train=False, num_samples=50), batch_size=16)
|
|
|
|
def test_dataloader(self):
|
|
return DataLoader(TrialMNIST(train=False, num_samples=50), batch_size=16)
|