196 lines
5.9 KiB
Python
196 lines
5.9 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from typing import Any, Dict, Optional, Union
|
|
from unittest.mock import Mock
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning import Callback, Trainer
|
|
from pytorch_lightning.loggers.base import LightningLoggerBase
|
|
from tests.helpers import BoringModel
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
class AllRankLogger(LightningLoggerBase):
|
|
"""Logger to test all-rank logging (i.e. not just rank 0).
|
|
|
|
Logs are saved to local variable `logs`.
|
|
"""
|
|
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.logs = {}
|
|
self.exp = object()
|
|
|
|
def experiment(self) -> Any:
|
|
return self.exp
|
|
|
|
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None):
|
|
self.logs.update(metrics)
|
|
|
|
def version(self) -> Union[int, str]:
|
|
return 1
|
|
|
|
def name(self) -> str:
|
|
return "AllRank"
|
|
|
|
def log_hyperparams(self, *args, **kwargs) -> None:
|
|
pass
|
|
|
|
|
|
class TestModel(BoringModel):
|
|
log_name = "rank-{rank}"
|
|
|
|
def on_train_start(self):
|
|
self.log(self.log_name.format(rank=self.local_rank), 0)
|
|
|
|
def on_train_end(self):
|
|
assert self.log_name.format(rank=self.local_rank) in self.logger.logs, "Expected rank to be logged"
|
|
|
|
|
|
@RunIf(skip_windows=True)
|
|
def test_all_rank_logging_ddp_cpu(tmpdir):
|
|
"""Check that all ranks can be logged from."""
|
|
model = TestModel()
|
|
all_rank_logger = AllRankLogger()
|
|
trainer = Trainer(
|
|
accelerator="ddp_cpu",
|
|
num_processes=2,
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
logger=all_rank_logger,
|
|
log_every_n_steps=1,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
@RunIf(min_gpus=2)
|
|
def test_all_rank_logging_ddp_spawn(tmpdir):
|
|
"""Check that all ranks can be logged from."""
|
|
model = TestModel()
|
|
all_rank_logger = AllRankLogger()
|
|
model.training_epoch_end = None
|
|
trainer = Trainer(
|
|
accelerator="ddp_spawn",
|
|
gpus=2,
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
logger=all_rank_logger,
|
|
weights_summary=None,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_first_logger_call_in_subprocess(tmpdir):
|
|
"""Test that the Trainer does not call the logger too early.
|
|
|
|
Only when the worker processes are initialized do we have access to the rank and know which one is the main process.
|
|
"""
|
|
|
|
class LoggerCallsObserver(Callback):
|
|
def on_fit_start(self, trainer, pl_module):
|
|
# this hook is executed directly before Trainer.pre_dispatch
|
|
# logger should not write any logs until this point
|
|
assert not trainer.logger.method_calls
|
|
assert not os.listdir(trainer.logger.save_dir)
|
|
|
|
def on_train_start(self, trainer, pl_module):
|
|
assert trainer.logger.method_call
|
|
trainer.logger.log_hyperparams.assert_called_once()
|
|
trainer.logger.log_graph.assert_called_once()
|
|
|
|
logger = Mock()
|
|
logger.version = "0"
|
|
logger.name = "name"
|
|
logger.save_dir = tmpdir
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
logger=logger,
|
|
callbacks=[LoggerCallsObserver()],
|
|
)
|
|
trainer.fit(model)
|
|
|
|
|
|
def test_logger_after_fit_predict_test_calls(tmpdir):
|
|
"""Make sure logger outputs are finalized after fit, prediction, and test calls."""
|
|
|
|
class BufferLogger(LightningLoggerBase):
|
|
def __init__(self):
|
|
super().__init__()
|
|
self.buffer = {}
|
|
self.logs = {}
|
|
|
|
def log_metrics(self, metrics: Dict[str, float], step: Optional[int] = None) -> None:
|
|
self.buffer.update(metrics)
|
|
|
|
def finalize(self, status: str) -> None:
|
|
self.logs.update(self.buffer)
|
|
self.buffer = {}
|
|
|
|
@property
|
|
def experiment(self) -> Any:
|
|
return None
|
|
|
|
@property
|
|
def version(self) -> Union[int, str]:
|
|
return 1
|
|
|
|
@property
|
|
def name(self) -> str:
|
|
return "BufferLogger"
|
|
|
|
def log_hyperparams(self, *args, **kwargs) -> None:
|
|
return None
|
|
|
|
class LoggerCallsObserver(Callback):
|
|
def on_fit_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
|
|
trainer.logger.log_metrics({"fit": 1})
|
|
|
|
def on_validation_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
|
|
trainer.logger.log_metrics({"validate": 1})
|
|
|
|
def on_predict_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
|
|
trainer.logger.log_metrics({"predict": 1})
|
|
|
|
def on_test_end(self, trainer: "pl.Trainer", pl_module: "pl.LightningModule") -> None:
|
|
trainer.logger.log_metrics({"test": 1})
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
max_epochs=1,
|
|
logger=BufferLogger(),
|
|
callbacks=[LoggerCallsObserver()],
|
|
)
|
|
|
|
assert not trainer.logger.logs
|
|
trainer.fit(model)
|
|
assert trainer.logger.logs == {"fit": 1, "validate": 1}
|
|
trainer.test(model)
|
|
assert trainer.logger.logs == {"fit": 1, "validate": 1, "test": 1}
|
|
trainer.predict(model)
|
|
assert trainer.logger.logs == {"fit": 1, "validate": 1, "test": 1, "predict": 1}
|