lightning/pytorch_lightning/trainer/trainer.py

987 lines
38 KiB
Python

import distutils
import inspect
import os
import sys
import warnings
from argparse import ArgumentParser
from typing import Union, Optional, List, Dict, Tuple, Iterable, Any
import torch
import torch.distributed as torch_distrib
import torch.multiprocessing as mp
from torch.utils.data import DataLoader
from tqdm.auto import tqdm
from pytorch_lightning import _logger as log
from pytorch_lightning.callbacks import ModelCheckpoint, EarlyStopping, Callback
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.loggers import LightningLoggerBase
from pytorch_lightning.profiler import SimpleProfiler, PassThroughProfiler, BaseProfiler
from pytorch_lightning.trainer.auto_mix_precision import TrainerAMPMixin
from pytorch_lightning.trainer.callback_config import TrainerCallbackConfigMixin
from pytorch_lightning.trainer.callback_hook import TrainerCallbackHookMixin
from pytorch_lightning.trainer.data_loading import TrainerDataLoadingMixin
from pytorch_lightning.trainer.deprecated_api import TrainerDeprecatedAPITillVer0_8, TrainerDeprecatedAPITillVer0_9
from pytorch_lightning.trainer.distrib_data_parallel import TrainerDDPMixin
from pytorch_lightning.trainer.distrib_parts import TrainerDPMixin, parse_gpu_ids, determine_root_gpu_device
from pytorch_lightning.trainer.evaluation_loop import TrainerEvaluationLoopMixin
from pytorch_lightning.trainer.logging import TrainerLoggingMixin
from pytorch_lightning.trainer.model_hooks import TrainerModelHooksMixin
from pytorch_lightning.trainer.optimizers import TrainerOptimizersMixin
from pytorch_lightning.trainer.supporters import TensorRunningMean
from pytorch_lightning.trainer.training_io import TrainerIOMixin
from pytorch_lightning.trainer.training_loop import TrainerTrainLoopMixin
from pytorch_lightning.trainer.training_tricks import TrainerTrainingTricksMixin
from pytorch_lightning.utilities.exceptions import MisconfigurationException
try:
from apex import amp
except ImportError:
APEX_AVAILABLE = False
else:
APEX_AVAILABLE = True
try:
import torch_xla
import torch_xla.core.xla_model as xm
import torch_xla.distributed.xla_multiprocessing as xmp
except ImportError:
XLA_AVAILABLE = False
else:
XLA_AVAILABLE = True
class Trainer(
TrainerIOMixin,
TrainerOptimizersMixin,
TrainerAMPMixin,
TrainerDPMixin,
TrainerDDPMixin,
TrainerLoggingMixin,
TrainerModelHooksMixin,
TrainerTrainingTricksMixin,
TrainerDataLoadingMixin,
TrainerEvaluationLoopMixin,
TrainerTrainLoopMixin,
TrainerCallbackConfigMixin,
TrainerCallbackHookMixin,
TrainerDeprecatedAPITillVer0_8,
TrainerDeprecatedAPITillVer0_9,
):
DEPRECATED_IN_0_8 = (
'gradient_clip', 'nb_gpu_nodes', 'max_nb_epochs', 'min_nb_epochs',
'add_row_log_interval', 'nb_sanity_val_steps'
)
DEPRECATED_IN_0_9 = ('use_amp', 'show_progress_bar')
def __init__(
self,
logger: Union[LightningLoggerBase, Iterable[LightningLoggerBase], bool] = True,
checkpoint_callback: Union[ModelCheckpoint, bool] = True,
early_stop_callback: Optional[Union[EarlyStopping, bool]] = False,
callbacks: List[Callback] = [],
default_save_path: Optional[str] = None,
gradient_clip_val: float = 0,
process_position: int = 0,
num_nodes: int = 1,
gpus: Optional[Union[List[int], str, int]] = None,
num_tpu_cores: Optional[int] = None,
log_gpu_memory: Optional[str] = None,
progress_bar_refresh_rate: int = 1,
overfit_pct: float = 0.0,
track_grad_norm: int = -1,
check_val_every_n_epoch: int = 1,
fast_dev_run: bool = False,
accumulate_grad_batches: Union[int, Dict[int, int], List[list]] = 1,
max_epochs: int = 1000,
min_epochs: int = 1,
max_steps: Optional[int] = None,
min_steps: Optional[int] = None,
train_percent_check: float = 1.0,
val_percent_check: float = 1.0,
test_percent_check: float = 1.0,
val_check_interval: float = 1.0,
log_save_interval: int = 100,
row_log_interval: int = 10,
add_row_log_interval=None, # backward compatible, todo: remove in v0.8.0
distributed_backend: Optional[str] = None,
precision: int = 32,
print_nan_grads: bool = False, # backward compatible, todo: remove in v0.9.0
weights_summary: Optional[str] = 'full',
weights_save_path: Optional[str] = None,
amp_level: str = 'O1',
num_sanity_val_steps: int = 5,
truncated_bptt_steps: Optional[int] = None,
resume_from_checkpoint: Optional[str] = None,
profiler: Optional[BaseProfiler] = None,
benchmark: bool = False,
reload_dataloaders_every_epoch: bool = False,
gradient_clip=None, # backward compatible, todo: remove in v0.8.0
nb_gpu_nodes=None, # backward compatible, todo: remove in v0.8.0
max_nb_epochs=None, # backward compatible, todo: remove in v0.8.0
min_nb_epochs=None, # backward compatible, todo: remove in v0.8.0
use_amp=None, # backward compatible, todo: remove in v0.9.0
show_progress_bar=None, # backward compatible, todo: remove in v0.9.0
nb_sanity_val_steps=None, # backward compatible, todo: remove in v0.8.0
**kwargs
):
r"""
Customize every aspect of training via flags
Args:
logger: Logger (or iterable collection of loggers) for experiment tracking.
checkpoint_callback: Callback for checkpointing.
early_stop_callback (:class:`pytorch_lightning.callbacks.EarlyStopping`):
callbacks: Add a list of callbacks.
default_save_path: Default path for logs and weights when no logger/ckpt_callback passed
gradient_clip_val: 0 means don't clip.
gradient_clip:
.. warning:: .. deprecated:: 0.7.0
Use `gradient_clip_val` instead. Will remove 0.9.0.
process_position: orders the tqdm bar when running multiple models on same machine.
num_nodes: number of GPU nodes for distributed training.
nb_gpu_nodes:
.. warning:: .. deprecated:: 0.7.0
Use `num_nodes` instead. Will remove 0.9.0.
gpus: Which GPUs to train on.
num_tpu_cores: How many TPU cores to train on (1 or 8).
log_gpu_memory: None, 'min_max', 'all'. Might slow performance
show_progress_bar:
.. warning:: .. deprecated:: 0.7.2
Set `progress_bar_refresh_rate` to postive integer to enable. Will remove 0.9.0.
progress_bar_refresh_rate: How often to refresh progress bar (in steps). Value ``0`` disables progress bar.
overfit_pct: How much of training-, validation-, and test dataset to check.
track_grad_norm: -1 no tracking. Otherwise tracks that norm
check_val_every_n_epoch: Check val every n train epochs.
fast_dev_run: runs 1 batch of train, test and val to find any bugs (ie: a sort of unit test).
accumulate_grad_batches: Accumulates grads every k batches or as set up in the dict.
max_epochs: Stop training once this number of epochs is reached.
max_nb_epochs:
.. warning:: .. deprecated:: 0.7.0
Use `max_epochs` instead. Will remove 0.9.0.
min_epochs: Force training for at least these many epochs
min_nb_epochs:
.. warning:: .. deprecated:: 0.7.0
Use `min_epochs` instead. Will remove 0.9.0.
max_steps: Stop training after this number of steps. Disabled by default (None).
min_steps: Force training for at least these number of steps. Disabled by default (None).
train_percent_check: How much of training dataset to check.
val_percent_check: How much of validation dataset to check.
test_percent_check: How much of test dataset to check.
val_check_interval: How often within one training epoch to check the validation set
log_save_interval: Writes logs to disk this often
row_log_interval: How often to add logging rows (does not write to disk)
add_row_log_interval:
.. warning:: .. deprecated:: 0.7.0
Use `row_log_interval` instead. Will remove 0.9.0.
distributed_backend: The distributed backend to use.
use_amp:
.. warning:: .. deprecated:: 0.7.0
Use `precision` instead. Will remove 0.9.0.
precision: Full precision (32), half precision (16).
print_nan_grads:
.. warning:: .. deprecated:: 0.7.2
Has no effect. When detected, NaN grads will be printed automatically.
Will remove 0.9.0.
weights_summary: Prints a summary of the weights when training begins.
weights_save_path: Where to save weights if specified.
amp_level: The optimization level to use (O1, O2, etc...).
num_sanity_val_steps: Sanity check runs n batches of val before starting the training routine.
nb_sanity_val_steps:
.. warning:: .. deprecated:: 0.7.0
Use `num_sanity_val_steps` instead. Will remove 0.8.0.
truncated_bptt_steps: Truncated back prop breaks performs backprop every k steps of
resume_from_checkpoint: To resume training from a specific checkpoint pass in the path here.
profiler: To profile individual steps during training and assist in
reload_dataloaders_every_epoch: Set to True to reload dataloaders every epoch
benchmark: If true enables cudnn.benchmark.
"""
# Init callbacks
self.callbacks = callbacks
self.on_init_start()
# benchmarking
self.benchmark = benchmark
if benchmark:
torch.backends.cudnn.benchmark = True
# Transfer params
self.num_nodes = num_nodes
# Backward compatibility, TODO: remove in v0.8.0
if nb_gpu_nodes is not None:
warnings.warn("Argument `nb_gpu_nodes` has renamed to `num_nodes` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.num_gpu_nodes = nb_gpu_nodes
self.log_gpu_memory = log_gpu_memory
self.gradient_clip_val = gradient_clip_val
# Backward compatibility, TODO: remove in v0.8.0
if gradient_clip is not None:
warnings.warn("Argument `gradient_clip` has renamed to `gradient_clip_val` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.gradient_clip = gradient_clip
self.progress_bar_refresh_rate = progress_bar_refresh_rate
self.check_val_every_n_epoch = check_val_every_n_epoch
self.track_grad_norm = track_grad_norm
self.on_gpu = True if (gpus and torch.cuda.is_available()) else False
# tpu config
self.on_tpu = num_tpu_cores is not None
self.num_tpu_cores = num_tpu_cores
assert num_tpu_cores in [1, 8, None], 'num_tpu_cores can only be 1 or 8'
self.process_position = process_position
self.weights_summary = weights_summary
self.max_epochs = max_epochs
# Backward compatibility, TODO: remove in v0.8.0
if max_nb_epochs is not None:
warnings.warn("Argument `max_nb_epochs` has renamed to `max_epochs` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.max_nb_epochs = max_nb_epochs
self.min_epochs = min_epochs
# Backward compatibility, TODO: remove in v0.8.0
if min_nb_epochs is not None:
warnings.warn("Argument `min_nb_epochs` has renamed to `min_epochs` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.min_nb_epochs = min_nb_epochs
self.max_steps = max_steps
self.min_steps = min_steps
self.num_sanity_val_steps = num_sanity_val_steps
# Backward compatibility, TODO: remove in v0.8.0
if nb_sanity_val_steps is not None:
warnings.warn("Argument `nb_sanity_val_steps` has renamed to "
"`num_sanity_val_steps` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
self.nb_sanity_val_steps = nb_sanity_val_steps
# Backward compatibility, TODO: remove in v0.9.0
if print_nan_grads:
warnings.warn("Argument `print_nan_grads` has no effect and will be removed in v0.9.0."
" NaN grads will be printed automatically when detected.",
DeprecationWarning)
self.reload_dataloaders_every_epoch = reload_dataloaders_every_epoch
self.truncated_bptt_steps = truncated_bptt_steps
self.resume_from_checkpoint = resume_from_checkpoint
self.shown_warnings = set()
self.fast_dev_run = fast_dev_run
if self.fast_dev_run:
self.num_sanity_val_steps = 0
self.max_epochs = 1
log.info('Running in fast_dev_run mode: will run a full train,'
' val and test loop using a single batch')
# set default save path if user didn't provide one
self.default_save_path = default_save_path
if self.default_save_path is None:
self.default_save_path = os.getcwd()
# training bookeeping
self.total_batch_idx = 0
self.running_loss = TensorRunningMean(window_length=20)
self.batch_idx = 0
self.tqdm_metrics = {}
self.callback_metrics = {}
self.num_val_batches = 0
self.num_training_batches = 0
self.num_test_batches = 0
self.train_dataloader = None
self.test_dataloaders = None
self.val_dataloaders = None
# training state
self.model = None
self.testing = False
self.disable_validation = False
self.lr_schedulers = []
self.optimizers = None
self.optimizer_frequencies = []
self.global_step = 0
self.current_epoch = 0
self.total_batches = 0
self.interrupted = False
# configure logger
self.configure_logger(logger)
# configure profiler
if profiler is True:
profiler = SimpleProfiler()
self.profiler = profiler or PassThroughProfiler()
# configure early stop callback
# creates a default one if none passed in
self.configure_early_stopping(early_stop_callback)
# configure checkpoint callback
self.checkpoint_callback = checkpoint_callback
self.weights_save_path = weights_save_path
# accumulated grads
self.accumulate_grad_batches = accumulate_grad_batches
self.configure_accumulated_gradients(accumulate_grad_batches)
# allow int, string and gpu list
self.gpus = gpus
self.data_parallel_device_ids = parse_gpu_ids(self.gpus)
self.root_gpu = determine_root_gpu_device(self.data_parallel_device_ids)
self.root_device = torch.device("cpu")
# tpu state flags
self.use_tpu = False
self.tpu_local_core_rank = None
self.tpu_global_core_rank = None
# distributed backend choice
self.use_ddp = False
self.use_ddp2 = False
self.use_dp = False
self.single_gpu = False
self.distributed_backend = distributed_backend
self.set_distributed_mode(distributed_backend, self.num_nodes)
# override dist backend when using tpus
if self.on_tpu:
self.init_tpu()
self.current_tpu_idx = None
# init flags for SLURM+ddp to work
self.proc_rank = 0
self.world_size = 1
self.node_rank = 0
self.configure_slurm_ddp(self.num_nodes)
# nvidia setup
self.set_nvidia_flags(self.is_slurm_managing_tasks, self.data_parallel_device_ids)
# can't init progress bar here because starting a new process
# means the progress_bar won't survive pickling
# backward compatibility
if show_progress_bar is not None:
self.show_progress_bar = show_progress_bar
# logging
self.log_save_interval = log_save_interval
self.val_check_interval = val_check_interval
# backward compatibility
if add_row_log_interval is not None:
warnings.warn("`add_row_log_interval` has renamed to `row_log_interval` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
if not row_log_interval: # in case you did not set the proper value
row_log_interval = add_row_log_interval
self.row_log_interval = row_log_interval
# how much of the data to use
self.overfit_pct = overfit_pct
self.determine_data_use_amount(train_percent_check, val_percent_check,
test_percent_check, overfit_pct)
# 16 bit mixed precision training using apex
self.amp_level = amp_level
self.precision = precision
# Backward compatibility, TODO: remove in v0.9.0
if use_amp is not None:
warnings.warn("`use_amp` has been replaced by `precision` since v0.7.0"
" and this argument will be removed in v0.9.0", DeprecationWarning)
self.precision = 16 if use_amp else 32
assert self.precision in (16, 32), 'only 32 or 16 bit precision supported'
if self.precision == 16 and self.num_tpu_cores is None:
use_amp = True
self.init_amp(use_amp)
# Callback system
self.on_init_end()
@property
def slurm_job_id(self) -> int:
try:
job_id = os.environ['SLURM_JOB_ID']
job_id = int(job_id)
except Exception:
job_id = None
return job_id
@classmethod
def default_attributes(cls):
init_signature = inspect.signature(Trainer)
args = {}
for param_name in init_signature.parameters:
value = init_signature.parameters[param_name].default
args[param_name] = value
return args
@classmethod
def get_init_arguments_and_types(cls) -> List[Tuple[str, Tuple, Any]]:
r"""Scans the Trainer signature and returns argument names, types and default values.
Returns:
List with tuples of 3 values:
(argument name, set with argument types, argument default value).
Examples:
>>> args = Trainer.get_init_arguments_and_types()
>>> import pprint
>>> pprint.pprint(sorted(args)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
[('accumulate_grad_batches',
(<class 'int'>, typing.Dict[int, int], typing.List[list]),
1),
...
('callbacks', (<class 'pytorch_lightning.callbacks.base.Callback'>,), []),
('check_val_every_n_epoch', (<class 'int'>,), 1),
...
('max_epochs', (<class 'int'>,), 1000),
...
('precision', (<class 'int'>,), 32),
('print_nan_grads', (<class 'bool'>,), False),
('process_position', (<class 'int'>,), 0),
('profiler',
(<class 'pytorch_lightning.profiler.profilers.BaseProfiler'>,
<class 'NoneType'>),
None),
...
"""
trainer_default_params = inspect.signature(cls).parameters
name_type_default = []
for arg in trainer_default_params:
arg_type = trainer_default_params[arg].annotation
arg_default = trainer_default_params[arg].default
try:
arg_types = tuple(arg_type.__args__)
except AttributeError:
arg_types = (arg_type,)
name_type_default.append((arg, arg_types, arg_default))
return name_type_default
@classmethod
def get_deprecated_arg_names(cls) -> List:
"""Returns a list with deprecated Trainer arguments."""
depr_arg_names = []
for name, val in cls.__dict__.items():
if name.startswith('DEPRECATED') and isinstance(val, (tuple, list)):
depr_arg_names.extend(val)
return depr_arg_names
@classmethod
def add_argparse_args(cls, parent_parser: ArgumentParser) -> ArgumentParser:
r"""Extends existing argparse by default `Trainer` attributes.
Args:
parent_parser:
The custom cli arguments parser, which will be extended by
the Trainer default arguments.
Only arguments of the allowed types (str, float, int, bool) will
extend the `parent_parser`.
"""
parser = ArgumentParser(parents=[parent_parser], add_help=False, )
depr_arg_names = cls.get_deprecated_arg_names()
allowed_types = (str, float, int, bool)
# TODO: get "help" from docstring :)
for arg, arg_types, arg_default in cls.get_init_arguments_and_types():
if arg not in depr_arg_names:
for allowed_type in allowed_types:
if allowed_type in arg_types:
if allowed_type is bool:
allowed_type = lambda x: bool(distutils.util.strtobool(x))
parser.add_argument(
f'--{arg}',
default=arg_default,
type=allowed_type,
dest=arg,
help='autogenerated by pl.Trainer'
)
break
return parser
@classmethod
def from_argparse_args(cls, args):
params = vars(args)
return cls(**params)
@property
def num_gpus(self) -> int:
gpus = self.data_parallel_device_ids
if gpus is None:
return 0
return len(gpus)
@property
def data_parallel(self) -> bool:
return self.use_dp or self.use_ddp or self.use_ddp2
@property
def training_tqdm_dict(self) -> dict:
"""Read-only for tqdm metrics.
:return:
"""
ref_model = self.model if not self.data_parallel else self.model.module
return dict(**ref_model.get_tqdm_dict(), **self.tqdm_metrics)
@property
def tng_tqdm_dic(self):
"""Read-only for tqdm metrics.
.. warning:: .. deprecated:: 0.5.0
Use `training_tqdm_dict` instead. Will remove 0.8.0.
"""
warnings.warn("`tng_tqdm_dic` has renamed to `training_tqdm_dict` since v0.5.0"
" and this method will be removed in v0.8.0", DeprecationWarning)
return self.training_tqdm_dict
# -----------------------------
# MODEL TRAINING
# -----------------------------
def fit(
self,
model: LightningModule,
train_dataloader: Optional[DataLoader] = None,
val_dataloaders: Optional[DataLoader] = None,
test_dataloaders: Optional[DataLoader] = None
):
r"""
Runs the full optimization routine.
Args:
model: Model to fit.
train_dataloader: A Pytorch
DataLoader with training samples. If the model has
a predefined train_dataloader method this will be skipped.
val_dataloaders: Either a single
Pytorch Dataloader or a list of them, specifying validation samples.
If the model has a predefined val_dataloaders method this will be skipped
test_dataloaders: Either a single
Pytorch Dataloader or a list of them, specifying validation samples.
If the model has a predefined test_dataloaders method this will be skipped
Example::
# Option 1,
# Define the train_dataloader(), test_dataloader() and val_dataloader() fxs
# in the lightningModule
# RECOMMENDED FOR MOST RESEARCH AND APPLICATIONS TO MAINTAIN READABILITY
trainer = Trainer()
model = LightningModule()
trainer.fit(model)
# Option 2
# in production cases we might want to pass different datasets to the same model
# Recommended for PRODUCTION SYSTEMS
train, val, test = DataLoader(...), DataLoader(...), DataLoader(...)
trainer = Trainer()
model = LightningModule()
trainer.fit(model, train_dataloader=train,
val_dataloader=val, test_dataloader=test)
# Option 1 & 2 can be mixed, for example the training set can be
# defined as part of the model, and validation/test can then be
# feed to .fit()
"""
# bind logger and other properties
model.logger = self.logger
self.copy_trainer_model_properties(model)
# set up the passed in dataloaders (if needed)
self.__attach_dataloaders(model, train_dataloader, val_dataloaders, test_dataloaders)
# check that model is configured correctly
self.check_model_configuration(model)
# download the data and do whatever transforms we need
# do before any spawn calls so that the model can assign properties
# only on proc 0 because no spawn has happened yet
model.prepare_data()
# route to appropriate start method
# when using multi-node or DDP within a node start each module in a separate process
if self.use_ddp2:
task = int(os.environ['SLURM_LOCALID'])
self.ddp_train(task, model)
elif self.use_ddp:
if self.is_slurm_managing_tasks:
task = int(os.environ['SLURM_LOCALID'])
self.ddp_train(task, model)
else:
self.__set_random_port()
# track for predict
self.model = model
# train
mp.spawn(self.ddp_train, nprocs=self.num_gpus, args=(model,))
# load weights if not interrupted
self.load_spawn_weights(model)
self.model = model
# 1 gpu or dp option triggers training using DP module
# easier to avoid NCCL issues
elif self.use_dp:
self.dp_train(model)
elif self.single_gpu:
self.single_gpu_train(model)
elif self.use_tpu: # pragma: no-cover
log.info(f'training on {self.num_tpu_cores} TPU cores')
# COLAB_GPU is an env var available by default in Colab environments.
start_method = 'fork' if os.getenv('COLAB_GPU') else 'spawn'
# track for predict
self.model = model
# train
xmp.spawn(self.tpu_train, args=(model,), nprocs=self.num_tpu_cores, start_method=start_method)
# load weights if not interrupted
self.load_spawn_weights(model)
self.model = model
# ON CPU
else:
# run through amp wrapper
if self.use_amp:
raise MisconfigurationException('amp + cpu is not supported. Please use a GPU option')
# CHOOSE OPTIMIZER
# allow for lr schedulers as well
self.optimizers, self.lr_schedulers, self.optimizer_frequencies = self.init_optimizers(model)
self.run_pretrain_routine(model)
# return 1 when finished
# used for testing or when we need to know that training succeeded
return 1
def __set_random_port(self):
"""
When running DDP NOT managed by SLURM, the ports might collide
:return:
"""
try:
default_port = os.environ['MASTER_PORT']
except Exception:
import random
default_port = random.randint(10000, 19000)
os.environ['MASTER_PORT'] = str(default_port)
def __attach_dataloaders(self, model, train_dataloader, val_dataloaders, test_dataloaders):
# when dataloader is passed via fit, patch the train_dataloader
# functions to overwrite with these implementations
if train_dataloader is not None:
model.train_dataloader = _PatchDataLoader(train_dataloader)
if val_dataloaders is not None:
model.val_dataloader = _PatchDataLoader(val_dataloaders)
if test_dataloaders is not None:
model.test_dataloader = _PatchDataLoader(test_dataloaders)
def run_pretrain_routine(self, model: LightningModule):
"""Sanity check a few things before starting actual training.
Args:
model: The model to run sanity test on.
"""
ref_model = model
if self.data_parallel:
ref_model = model.module
# give model convenience properties
ref_model.trainer = self
# set local properties on the model
self.copy_trainer_model_properties(ref_model)
# log hyper-parameters
if self.logger is not None:
# save exp to get started
if hasattr(ref_model, "hparams"):
self.logger.log_hyperparams(ref_model.hparams)
self.logger.save()
if self.use_ddp or self.use_ddp2:
torch_distrib.barrier()
# wait for all models to restore weights
if self.on_tpu and XLA_AVAILABLE:
# wait for all processes to catch up
torch_xla.core.xla_model.rendezvous("pl.Trainer.run_pretrain_routine")
# register auto-resubmit when on SLURM
self.register_slurm_signal_handlers()
# print model summary
# TODO: remove self.testing condition because model.summarize() is wiping out the weights
if self.proc_rank == 0 and self.weights_summary is not None and not self.testing:
if self.weights_summary in ['full', 'top']:
ref_model.summarize(mode=self.weights_summary)
else:
raise MisconfigurationException("weights_summary can be None, 'full' or 'top'")
# track model now.
# if cluster resets state, the model will update with the saved weights
self.model = model
# set up checkpoint callback
self.configure_checkpoint_callback()
# restore training and model before hpc call
self.restore_weights(model)
# when testing requested only run test and return
if self.testing:
# only load test dataloader for testing
# self.reset_test_dataloader(ref_model)
self.run_evaluation(test_mode=True)
return
# check if we should run validation during training
self.disable_validation = not (self.is_overriden('validation_step') and self.val_percent_check > 0) \
and not self.fast_dev_run
# run tiny validation (if validation defined)
# to make sure program won't crash during val
ref_model.on_sanity_check_start()
if not self.disable_validation and self.num_sanity_val_steps > 0:
self.reset_val_dataloader(ref_model)
# init progress bars for validation sanity check
pbar = tqdm(desc='Validation sanity check',
total=self.num_sanity_val_steps * len(self.val_dataloaders),
leave=False, position=2 * self.process_position,
disable=not self.progress_bar_refresh_rate, dynamic_ncols=True)
self.main_progress_bar = pbar
# dummy validation progress bar
self.val_progress_bar = tqdm(disable=True)
eval_results = self._evaluate(model,
self.val_dataloaders,
self.num_sanity_val_steps,
False)
_, _, _, callback_metrics, _ = self.process_output(eval_results)
# close progress bars
self.main_progress_bar.close()
self.val_progress_bar.close()
if self.enable_early_stop:
self.early_stop_callback.check_metrics(callback_metrics)
# init progress bar
pbar = tqdm(leave=True, position=2 * self.process_position,
disable=not self.show_progress_bar, dynamic_ncols=True,
file=sys.stdout, smoothing=0)
self.main_progress_bar = pbar
# clear cache before training
if self.on_gpu:
torch.cuda.empty_cache()
# CORE TRAINING LOOP
self.train()
def test(self, model: Optional[LightningModule] = None):
r"""
Separates from fit to make sure you never run on your test set until you want to.
Args:
model: The model to test.
Example::
# Option 1
# run test after fitting
trainer = Trainer()
model = LightningModule()
trainer.fit()
trainer.test()
# Option 2
# run test from a loaded model
model = LightningModule.load_from_checkpoint('path/to/checkpoint.ckpt')
trainer = Trainer()
trainer.test(model)
"""
self.testing = True
if model is not None:
self.model = model
self.fit(model)
elif self.use_ddp or self.use_tpu: # pragma: no-cover
# attempt to load weights from a spawn
path = os.path.join(self.default_save_path, '__temp_weight_ddp_end.ckpt')
test_model = self.model
if os.path.exists(path):
test_model = self.load_spawn_weights(self.model)
self.fit(test_model)
else:
self.run_evaluation(test_mode=True)
self.testing = False
def check_model_configuration(self, model: LightningModule):
r"""
Checks that the model is configured correctly before training is started.
Args:
model: The model to test.
"""
# Check training_step, train_dataloader, configure_optimizer methods
if not self.is_overriden('training_step', model):
raise MisconfigurationException(
'No `training_step()` method defined. Lightning `Trainer` expects as minimum a'
' `training_step()`, `training_dataloader()` and `configure_optimizers()` to be defined.')
if not self.is_overriden('train_dataloader', model):
raise MisconfigurationException(
'No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a'
' `training_step()`, `training_dataloader()` and `configure_optimizers()` to be defined.')
if not self.is_overriden('configure_optimizers', model):
raise MisconfigurationException(
'No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a'
' `training_step()`, `training_dataloader()` and `configure_optimizers()` to be defined.')
# Check val_dataloader, validation_step and validation_epoch_end
if self.is_overriden('val_dataloader', model):
if not self.is_overriden('validation_step', model):
raise MisconfigurationException('You have passed in a `val_dataloader()`'
' but have not defined `validation_step()`.')
else:
if not self.is_overriden('validation_epoch_end', model):
warnings.warn('You have defined a `val_dataloader()` and have'
' defined a `validation_step()`, you may also want to'
' define `validation_epoch_end()` for accumulating stats.',
RuntimeWarning)
else:
if self.is_overriden('validation_step', model):
raise MisconfigurationException('You have defined `validation_step()`,'
' but have not passed in a val_dataloader().')
# Check test_dataloader, test_step and test_epoch_end
if self.is_overriden('test_dataloader', model):
if not self.is_overriden('test_step', model):
raise MisconfigurationException('You have passed in a `test_dataloader()`'
' but have not defined `test_step()`.')
else:
if not self.is_overriden('test_epoch_end', model):
warnings.warn('You have defined a `test_dataloader()` and'
' have defined a `test_step()`, you may also want to'
' define `test_epoch_end()` for accumulating stats.',
RuntimeWarning)
else:
if self.is_overriden('test_step', model):
raise MisconfigurationException('You have defined `test_step()`,'
' but have not passed in a `test_dataloader()`.')
class _PatchDataLoader(object):
r"""
Callable object for patching dataloaders passed into trainer.fit().
Use this class to override model.*_dataloader() and be pickle-compatible.
Args:
dataloader: Dataloader object to return when called.
"""
def __init__(self, dataloader: Union[List[DataLoader], DataLoader]):
self.dataloader = dataloader
# cannot pickle __code__ so cannot verify if PatchDataloader
# exists which shows dataloader methods have been overwritten.
# so, we hack it by using the string representation
self.patch_loader_code = str(self.__call__.__code__)
def __call__(self) -> Union[List[DataLoader], DataLoader]:
return self.dataloader