176 lines
4.6 KiB
Python
176 lines
4.6 KiB
Python
from pytorch_lightning import Trainer
|
|
from examples import LightningTemplateModel
|
|
from argparse import Namespace
|
|
from test_tube import Experiment
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
import os
|
|
import shutil
|
|
|
|
import pytorch_lightning as ptl
|
|
import torch
|
|
from torch.nn import functional as F
|
|
from torch.utils.data import DataLoader
|
|
from torchvision.datasets import MNIST
|
|
|
|
|
|
class CoolModel(ptl.LightningModule):
|
|
|
|
def __init(self):
|
|
super(CoolModel, self).__init__()
|
|
# not the best model...
|
|
self.l1 = torch.nn.Linear(28 * 28, 10)
|
|
|
|
def forward(self, x):
|
|
return torch.relu(self.l1(x))
|
|
|
|
def my_loss(self, y_hat, y):
|
|
return F.cross_entropy(y_hat, y)
|
|
|
|
def training_step(self, batch, batch_nb):
|
|
x, y = batch
|
|
y_hat = self.forward(x)
|
|
return {'tng_loss': self.my_loss(y_hat, y)}
|
|
|
|
def validation_step(self, batch, batch_nb):
|
|
x, y = batch
|
|
y_hat = self.forward(x)
|
|
return {'val_loss': self.my_loss(y_hat, y)}
|
|
|
|
def validation_end(self, outputs):
|
|
avg_loss = torch.stack([x for x in outputs['val_loss']]).mean()
|
|
return avg_loss
|
|
|
|
def configure_optimizers(self):
|
|
return [torch.optim.Adam(self.parameters(), lr=0.02)]
|
|
|
|
@ptl.data_loader
|
|
def tng_dataloader(self):
|
|
return DataLoader(MNIST('path/to/save', train=True), batch_size=32)
|
|
|
|
@ptl.data_loader
|
|
def val_dataloader(self):
|
|
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
|
|
|
@ptl.data_loader
|
|
def test_dataloader(self):
|
|
return DataLoader(MNIST('path/to/save', train=False), batch_size=32)
|
|
|
|
|
|
def get_model():
|
|
# set up model with these hyperparams
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
hparams = Namespace(**{'drop_prob': 0.2,
|
|
'batch_size': 32,
|
|
'in_features': 28*28,
|
|
'learning_rate': 0.001*8,
|
|
'optimizer_name': 'adam',
|
|
'data_root': os.path.join(root_dir, 'mnist'),
|
|
'out_features': 10,
|
|
'hidden_dim': 1000})
|
|
model = LightningTemplateModel(hparams)
|
|
|
|
return model, hparams
|
|
|
|
|
|
def get_exp(debug=True):
|
|
# set up exp object without actually saving logs
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
exp = Experiment(debug=debug, save_dir=root_dir, name='tests_tt_dir')
|
|
return exp
|
|
|
|
|
|
def init_save_dir():
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
save_dir = os.path.join(root_dir, 'save_dir')
|
|
|
|
if os.path.exists(save_dir):
|
|
shutil.rmtree(save_dir)
|
|
|
|
os.makedirs(save_dir, exist_ok=True)
|
|
|
|
return save_dir
|
|
|
|
|
|
def clear_save_dir():
|
|
root_dir = os.path.dirname(os.path.realpath(__file__))
|
|
save_dir = os.path.join(root_dir, 'save_dir')
|
|
if os.path.exists(save_dir):
|
|
shutil.rmtree(save_dir)
|
|
|
|
|
|
def load_model(exp, save_dir):
|
|
|
|
# load trained model
|
|
tags_path = exp.get_data_path(exp.name, exp.version)
|
|
tags_path = os.path.join(tags_path, 'meta_tags.csv')
|
|
|
|
checkpoints = [x for x in os.listdir(save_dir) if '.ckpt' in x]
|
|
weights_dir = os.path.join(save_dir, checkpoints[0])
|
|
|
|
trained_model = LightningTemplateModel.load_from_metrics(weights_path=weights_dir, tags_csv=tags_path, on_gpu=True)
|
|
|
|
assert trained_model is not None, 'loading model failed'
|
|
|
|
return trained_model
|
|
|
|
|
|
def run_prediction(dataloader, trained_model):
|
|
# run prediction on 1 batch
|
|
for batch in dataloader:
|
|
break
|
|
|
|
x, y = batch
|
|
x = x.view(x.size(0), -1)
|
|
|
|
y_hat = trained_model(x)
|
|
|
|
# acc
|
|
labels_hat = torch.argmax(y_hat, dim=1)
|
|
val_acc = torch.sum(y == labels_hat).item() / (len(y) * 1.0)
|
|
val_acc = torch.tensor(val_acc)
|
|
val_acc = val_acc.item()
|
|
|
|
print(val_acc)
|
|
|
|
assert val_acc > 0.70, f'this model is expected to get > 0.7 in test set (it got {val_acc})'
|
|
|
|
|
|
def main():
|
|
|
|
save_dir = init_save_dir()
|
|
|
|
# exp file to get meta
|
|
exp = get_exp(False)
|
|
exp.save()
|
|
|
|
# exp file to get weights
|
|
checkpoint = ModelCheckpoint(save_dir)
|
|
|
|
trainer = Trainer(
|
|
experiment=exp,
|
|
checkpoint_callback=checkpoint,
|
|
progress_bar=True,
|
|
max_nb_epochs=1,
|
|
gpus=[0, 1],
|
|
distributed_backend='dp',
|
|
)
|
|
|
|
model = CoolModel()
|
|
|
|
result = trainer.fit(model)
|
|
|
|
# correct result and ok accuracy
|
|
assert result == 1, 'amp + ddp model failed to complete'
|
|
|
|
# test model loading
|
|
pretrained_model = load_model(exp, save_dir)
|
|
|
|
# test model preds
|
|
run_prediction(model.test_dataloader, pretrained_model)
|
|
|
|
clear_save_dir()
|
|
|
|
|
|
if __name__ == '__main__':
|
|
main()
|