87 lines
3.5 KiB
Python
87 lines
3.5 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Callable, Optional, TYPE_CHECKING, Union
|
|
|
|
import torch
|
|
from torch.optim import Optimizer
|
|
|
|
from pytorch_lightning.accelerators.accelerator import Accelerator
|
|
from pytorch_lightning.plugins.precision import MixedPrecisionPlugin
|
|
from pytorch_lightning.plugins.training_type.single_tpu import SingleTPUPlugin
|
|
from pytorch_lightning.plugins.training_type.tpu_spawn import TPUSpawnPlugin
|
|
from pytorch_lightning.utilities import _XLA_AVAILABLE
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
|
|
if _XLA_AVAILABLE:
|
|
import torch_xla.core.xla_model as xm
|
|
from torch_xla._patched_functions import clip_grad_norm_
|
|
|
|
xla_clip_grad_norm_ = clip_grad_norm_
|
|
|
|
if TYPE_CHECKING:
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.trainer.trainer import Trainer
|
|
|
|
|
|
class TPUAccelerator(Accelerator):
|
|
|
|
def setup(self, trainer: 'Trainer', model: 'LightningModule') -> None:
|
|
"""
|
|
Raises:
|
|
MisconfigurationException:
|
|
If AMP is used with TPU, or if TPUs are not using a single TPU core or TPU spawn training.
|
|
"""
|
|
if isinstance(self.precision_plugin, MixedPrecisionPlugin):
|
|
raise MisconfigurationException(
|
|
"amp + tpu is not supported. "
|
|
"Only bfloats are supported on TPU. Consider using TPUHalfPrecisionPlugin"
|
|
)
|
|
|
|
if not isinstance(self.training_type_plugin, (SingleTPUPlugin, TPUSpawnPlugin)):
|
|
raise MisconfigurationException("TPUs only support a single tpu core or tpu spawn training.")
|
|
return super().setup(trainer, model)
|
|
|
|
def run_optimizer_step(
|
|
self, optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any
|
|
) -> None:
|
|
xm.optimizer_step(optimizer, barrier=False, optimizer_args={'closure': lambda_closure, **kwargs})
|
|
|
|
def all_gather(self, tensor: torch.Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> torch.Tensor:
|
|
"""
|
|
Function to gather a tensor from several distributed processes
|
|
Args:
|
|
tensor: tensor of shape (batch, ...)
|
|
group: not available with TPUs
|
|
sync_grads: not available with TPUs
|
|
Return:
|
|
A tensor of shape (world_size, batch, ...)
|
|
"""
|
|
# todo: Add support for backward with all_gather
|
|
if isinstance(self.training_type_plugin, TPUSpawnPlugin) and self.training_type_plugin.is_distributed:
|
|
return xm.all_gather(tensor).view(-1, *tensor.shape)
|
|
return tensor
|
|
|
|
def clip_gradients(self, optimizer: Optimizer, clip_val: Union[float, int], norm_type: float = 2.0):
|
|
|
|
model = self.lightning_module
|
|
parameters = model.parameters()
|
|
|
|
grad_clip_val = float(clip_val)
|
|
if grad_clip_val <= 0:
|
|
return
|
|
|
|
max_norm = grad_clip_val
|
|
|
|
xla_clip_grad_norm_(parameters, max_norm, norm_type)
|