lightning/pytorch_lightning/trainer/predict_loop.py

159 lines
6.3 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Any, List, Optional
import torch
from torch.utils.data.dataloader import DataLoader
from pytorch_lightning.overrides.distributed import IndexBatchSamplerWrapper
from pytorch_lightning.plugins import DDPSpawnPlugin
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.types import _PREDICT_OUTPUT
from pytorch_lightning.utilities.warnings import WarningCache
class PredictLoop(object):
def __init__(self, trainer):
self.trainer = trainer
self.max_batches = None
self.num_dataloaders = None
self.warning_cache = WarningCache()
self.batch_indices: Optional[List[int]] = None
self.epoch_batch_indices: Optional[List[List[int]]] = None
self.predictions: Optional[List[List[Any]]] = None
# `DDPSpawnPlugin` plugins and derivate don't support return predictions.
self._return_predictions: Optional[bool] = None
self._previous_grad_status: Optional[bool] = None
@property
def return_predictions(self) -> bool:
return self._return_predictions
@return_predictions.setter
def return_predictions(self, return_predictions: Optional[bool] = None) -> None:
# ``DDPSpawnPlugin`` plugins and derivate don't support return predictions.
is_ddp_spawn = isinstance(self.trainer.training_type_plugin, DDPSpawnPlugin)
if return_predictions and is_ddp_spawn:
raise MisconfigurationException(
"`return_predictions` should be set to `False` when using the `DDPSpawnPlugin` or children class. "
f"Found {return_predictions} with training_type_plugin {type(self.trainer.training_type_plugin)}."
)
# For non ``DDPSpawnPlugin`` plugin, the `return_predictions` is True by default unless user decide otherwise.
self._return_predictions = not is_ddp_spawn if return_predictions is None else return_predictions
@property
def should_store_predictions(self) -> bool:
any_pred = any(cb.interval.on_epoch for cb in self.trainer.prediction_writer_callbacks)
return self.return_predictions or any_pred
def on_trainer_init(self):
self.trainer.num_predict_batches = []
def get_predict_dataloaders(self):
self.trainer.reset_predict_dataloader(self.trainer.lightning_module)
dataloaders = self.trainer.predict_dataloaders
max_batches = self.trainer.num_predict_batches
return dataloaders, max_batches
def should_skip_predict(self, max_batches):
return sum(max_batches) == 0
def on_predict_model_eval(self):
model_ref = self.trainer.lightning_module
model_ref.on_predict_model_eval()
def setup(self, max_batches, dataloaders):
# convert max_batches to list
if isinstance(max_batches, int):
max_batches = [max_batches] * len(dataloaders)
self.max_batches = max_batches
self.num_dataloaders = self._get_num_dataloaders(dataloaders)
self.predictions = [[] for _ in range(self.num_dataloaders)]
self.epoch_batch_indices = [[] for _ in range(self.num_dataloaders)]
def _get_num_dataloaders(self, dataloaders: List[DataLoader]) -> int:
# case where user does:
# return dl1, dl2
length = len(dataloaders)
if len(dataloaders) > 0 and isinstance(dataloaders[0], (list, tuple)):
length = len(dataloaders[0])
return length
def predict_step(self, batch: Any, batch_idx: int, dataloader_idx: int) -> None:
# configure args
args = [batch, batch_idx]
if self.num_dataloaders:
args.append(dataloader_idx)
# extract batch_indices and store them
self._store_batch_indices(dataloader_idx)
model_ref = self.trainer.lightning_module
self.trainer.call_hook("on_predict_batch_start", batch, batch_idx, dataloader_idx)
model_ref._current_fx_name = "predict"
predictions = self.trainer.accelerator.predict_step(args)
if predictions is None:
self.warning_cache.warn("predict returned None if it was on purpose, ignore this warning...")
self.trainer.call_hook("on_predict_batch_end", predictions, batch, batch_idx, dataloader_idx)
if self.should_store_predictions:
self.predictions[dataloader_idx].append(predictions)
def _store_batch_indices(self, dataloader_idx: int) -> None:
batch_sampler = self.trainer.predict_dataloaders[dataloader_idx].batch_sampler
if isinstance(batch_sampler, IndexBatchSamplerWrapper):
self.batch_indices = batch_sampler.batch_indices
if self.should_store_predictions:
self.epoch_batch_indices[dataloader_idx].append(batch_sampler.batch_indices)
def on_predict_start(self) -> None:
# enable eval mode + no grads
self.on_predict_model_eval()
self.trainer.lightning_module.zero_grad()
self._previous_grad_status = torch.is_grad_enabled()
torch.set_grad_enabled(False)
# hook
self.trainer.call_hook("on_predict_start")
self.trainer.call_hook("on_predict_epoch_start")
def on_predict_epoch_end(self) -> Optional[_PREDICT_OUTPUT]:
self.trainer.profiler.describe()
results = self.predictions
self.trainer.call_hook("on_predict_epoch_end", results)
if self.return_predictions:
return results[0] if self.num_dataloaders == 1 else results
def on_predict_end(self):
# clear memory. the predictions are extracted in `on_predict_epoch_end`.
self.predictions = None
self.batch_indices = None
# reset grad to its previous status.
torch.set_grad_enabled(self._previous_grad_status)
# hook
self.trainer.call_hook("on_predict_end")