115 lines
5.8 KiB
Python
115 lines
5.8 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.trainer.states import TrainerState
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities.model_helpers import is_overridden
|
|
|
|
|
|
class ConfigValidator:
|
|
|
|
def __init__(self, trainer: 'pl.Trainer') -> None:
|
|
self.trainer = trainer
|
|
|
|
def verify_loop_configurations(self, model: 'pl.LightningModule') -> None:
|
|
r"""
|
|
Checks that the model is configured correctly before the run is started.
|
|
|
|
Args:
|
|
model: The model to check the configuration.
|
|
|
|
"""
|
|
if self.trainer.state in (TrainerState.FITTING, TrainerState.TUNING):
|
|
self.__verify_train_loop_configuration(model)
|
|
self.__verify_eval_loop_configuration(model, 'val')
|
|
elif self.trainer.state == TrainerState.VALIDATING:
|
|
self.__verify_eval_loop_configuration(model, 'val')
|
|
elif self.trainer.state == TrainerState.TESTING:
|
|
self.__verify_eval_loop_configuration(model, 'test')
|
|
elif self.trainer.state == TrainerState.PREDICTING:
|
|
self.__verify_predict_loop_configuration(model)
|
|
self.__verify_dp_batch_transfer_support(model)
|
|
|
|
def __verify_train_loop_configuration(self, model: 'pl.LightningModule') -> None:
|
|
# -----------------------------------
|
|
# verify model has a training step
|
|
# -----------------------------------
|
|
has_training_step = is_overridden('training_step', model)
|
|
if not has_training_step:
|
|
raise MisconfigurationException(
|
|
'No `training_step()` method defined. Lightning `Trainer` expects as minimum a'
|
|
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
|
|
)
|
|
|
|
# -----------------------------------
|
|
# verify model has a train dataloader
|
|
# -----------------------------------
|
|
has_train_dataloader = is_overridden('train_dataloader', model)
|
|
if not has_train_dataloader:
|
|
raise MisconfigurationException(
|
|
'No `train_dataloader()` method defined. Lightning `Trainer` expects as minimum a'
|
|
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
|
|
)
|
|
|
|
# -----------------------------------
|
|
# verify model has optimizer
|
|
# -----------------------------------
|
|
has_optimizers = is_overridden('configure_optimizers', model)
|
|
if not has_optimizers:
|
|
raise MisconfigurationException(
|
|
'No `configure_optimizers()` method defined. Lightning `Trainer` expects as minimum a'
|
|
' `training_step()`, `train_dataloader()` and `configure_optimizers()` to be defined.'
|
|
)
|
|
|
|
trainer = self.trainer
|
|
|
|
trainer.overriden_optimizer_step = is_overridden('optimizer_step', model)
|
|
trainer.overriden_optimizer_zero_grad = is_overridden('optimizer_zero_grad', model)
|
|
automatic_optimization = model.automatic_optimization
|
|
going_to_accumulate_grad_batches = trainer.accumulation_scheduler.going_to_accumulate_grad_batches()
|
|
|
|
has_overriden_optimization_functions = trainer.overriden_optimizer_step or trainer.overriden_optimizer_zero_grad
|
|
if has_overriden_optimization_functions and going_to_accumulate_grad_batches and automatic_optimization:
|
|
raise MisconfigurationException(
|
|
'When overriding `LightningModule` optimizer_step or optimizer_zero_grad,'
|
|
' `accumulate_grad_batches` in `Trainer` should be 1.'
|
|
' It ensures optimizer_step or optimizer_zero_grad are called on every batch.'
|
|
)
|
|
|
|
def __verify_eval_loop_configuration(self, model: 'pl.LightningModule', stage: str) -> None:
|
|
loader_name = f'{stage}_dataloader'
|
|
step_name = 'validation_step' if stage == 'val' else 'test_step'
|
|
|
|
has_loader = is_overridden(loader_name, model)
|
|
has_step = is_overridden(step_name, model)
|
|
|
|
if has_loader and not has_step:
|
|
rank_zero_warn(f'you passed in a {loader_name} but have no {step_name}. Skipping {stage} loop')
|
|
if has_step and not has_loader:
|
|
rank_zero_warn(f'you defined a {step_name} but have no {loader_name}. Skipping {stage} loop')
|
|
|
|
def __verify_predict_loop_configuration(self, model: 'pl.LightningModule') -> None:
|
|
has_predict_dataloader = is_overridden('predict_dataloader', model)
|
|
if not has_predict_dataloader:
|
|
raise MisconfigurationException('Dataloader not found for `Trainer.predict`')
|
|
|
|
def __verify_dp_batch_transfer_support(self, model: 'pl.LightningModule') -> None:
|
|
"""Raise Misconfiguration exception since these hooks are not supported in DP mode"""
|
|
# TODO: Remove this blocker once batch transfer to device is integrated in Lightning for DP mode.
|
|
batch_transfer_hooks = ('on_before_batch_transfer', 'transfer_batch_to_device', 'on_after_batch_transfer')
|
|
for hook in batch_transfer_hooks:
|
|
if self.trainer.accelerator_connector.use_dp and is_overridden(hook, model):
|
|
raise MisconfigurationException(f'Overriding `{hook}` is not supported in DP mode.')
|