lightning/pytorch_lightning/callbacks/model_checkpoint.py

244 lines
9.3 KiB
Python

"""
Model Checkpointing
===================
Automatically save model checkpoints during training.
"""
import os
import shutil
import warnings
import re
import numpy as np
from pytorch_lightning.callbacks.base import Callback
from pytorch_lightning import _logger as log
class ModelCheckpoint(Callback):
r"""
Save the model after every epoch.
Args:
filepath: path to save the model file.
Can contain named formatting options to be auto-filled.
Example::
# no path
ModelCheckpoint()
# saves like /my/path/epoch_0.ckpt
# save any arbitrary metrics like and val_loss, etc in name
ModelCheckpoint(filepath='/my/path/{epoch}-{val_loss:.2f}-{other_metric:.2f}')
# saves file like: /my/path/epoch=2-val_loss=0.2_other_metric=0.3.ckpt
monitor (str): quantity to monitor.
verbose (bool): verbosity mode, False or True.
save_top_k (int): if `save_top_k == k`,
the best k models according to
the quantity monitored will be saved.
if ``save_top_k == 0``, no models are saved.
if ``save_top_k == -1``, all models are saved.
Please note that the monitors are checked every `period` epochs.
if ``save_top_k >= 2`` and the callback is called multiple
times inside an epoch, the name of the saved file will be
appended with a version count starting with `v0`.
mode (str): one of {auto, min, max}.
If ``save_top_k != 0``, the decision
to overwrite the current save file is made
based on either the maximization or the
minimization of the monitored quantity. For `val_acc`,
this should be `max`, for `val_loss` this should
be `min`, etc. In `auto` mode, the direction is
automatically inferred from the name of the monitored quantity.
save_weights_only (bool): if True, then only the model's weights will be
saved (`model.save_weights(filepath)`), else the full model
is saved (`model.save(filepath)`).
period (int): Interval (number of epochs) between checkpoints.
Example::
from pytorch_lightning import Trainer
from pytorch_lightning.callbacks import ModelCheckpoint
# saves checkpoints to my_path whenever 'val_loss' has a new min
checkpoint_callback = ModelCheckpoint(filepath='my_path')
Trainer(checkpoint_callback=checkpoint_callback)
# save epoch and val_loss in name
ModelCheckpoint(filepath='/my/path/here/sample-mnist_{epoch:02d}-{val_loss:.2f}')
# saves file like: /my/path/here/sample-mnist_epoch=02_val_loss=0.32.ckpt
"""
def __init__(self, filepath, monitor: str = 'val_loss', verbose: bool = False,
save_top_k: int = 1, save_weights_only: bool = False,
mode: str = 'auto', period: int = 1, prefix: str = ''):
super().__init__()
if save_top_k and os.path.isdir(filepath) and len(os.listdir(filepath)) > 0:
warnings.warn(
f"Checkpoint directory {filepath} exists and is not empty with save_top_k != 0."
"All files in this directory will be deleted when a checkpoint is saved!"
)
self.monitor = monitor
self.verbose = verbose
if os.path.isdir(filepath):
self.dirpath, self.filename = filepath, '{epoch}'
else:
self.dirpath, self.filename = os.path.split(filepath)
os.makedirs(self.dirpath, exist_ok=True)
self.save_top_k = save_top_k
self.save_weights_only = save_weights_only
self.period = period
self.epochs_since_last_check = 0
self.prefix = prefix
self.best_k_models = {}
# {filename: monitor}
self.kth_best_model = ''
self.best = 0
self.save_function = None
mode_dict = {
'min': (np.less, np.Inf, 'min'),
'max': (np.greater, -np.Inf, 'max'),
'auto': (np.greater, -np.Inf, 'max') if 'acc' in self.monitor or self.monitor.startswith('fmeasure')
else (np.less, np.Inf, 'min'),
}
if mode not in mode_dict:
warnings.warn(
f'ModelCheckpoint mode {mode} is unknown, '
'fallback to auto mode.', RuntimeWarning)
mode = 'auto'
self.monitor_op, self.kth_value, self.mode = mode_dict[mode]
def _del_model(self, filepath):
os.remove(filepath)
def _save_model(self, filepath):
# make paths
os.makedirs(os.path.dirname(filepath), exist_ok=True)
# delegate the saving to the model
if self.save_function is not None:
self.save_function(filepath)
else:
raise ValueError(".save_function() not set")
def check_monitor_top_k(self, current):
less_than_k_models = len(self.best_k_models) < self.save_top_k
if less_than_k_models:
return True
return self.monitor_op(current, self.best_k_models[self.kth_best_model])
def format_checkpoint_name(self, epoch, metrics, ver=None):
"""Generate a filename according define template.
Examples
--------
>>> tmpdir = os.path.dirname(__file__)
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}'))
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'epoch=0.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch:03d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(5, {}))
'epoch=005.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{epoch}-{val_loss:.2f}'))
>>> os.path.basename(ckpt.format_checkpoint_name(2, dict(val_loss=0.123456)))
'epoch=2-val_loss=0.12.ckpt'
>>> ckpt = ModelCheckpoint(os.path.join(tmpdir, '{missing:d}'))
>>> os.path.basename(ckpt.format_checkpoint_name(0, {}))
'missing=0.ckpt'
"""
# check if user passed in keys to the string
groups = re.findall(r'(\{.*?)[:\}]', self.filename)
if len(groups) == 0:
# default name
filename = f'{self.prefix}_ckpt_epoch_{epoch}'
else:
metrics['epoch'] = epoch
filename = self.filename
for tmp in groups:
name = tmp[1:]
filename = filename.replace(tmp, name + '={' + name)
if name not in metrics:
metrics[name] = 0
filename = filename.format(**metrics)
str_ver = f'_v{ver}' if ver is not None else ''
filepath = os.path.join(self.dirpath, self.prefix + filename + str_ver + '.ckpt')
return filepath
def on_validation_end(self, trainer, pl_module):
# only run on main process
if trainer.proc_rank != 0:
return
metrics = trainer.callback_metrics
epoch = trainer.current_epoch
self.epochs_since_last_check += 1
if self.save_top_k == 0:
# no models are saved
return
if self.epochs_since_last_check >= self.period:
self.epochs_since_last_check = 0
filepath = self.format_checkpoint_name(epoch, metrics)
version_cnt = 0
while os.path.isfile(filepath):
filepath = self.format_checkpoint_name(epoch, metrics, ver=version_cnt)
# this epoch called before
version_cnt += 1
if self.save_top_k != -1:
current = metrics.get(self.monitor)
if current is None:
warnings.warn(
f'Can save best model only with {self.monitor} available,'
' skipping.', RuntimeWarning)
else:
if self.check_monitor_top_k(current):
self._do_check_save(filepath, current, epoch)
else:
if self.verbose > 0:
log.info(
f'\nEpoch {epoch:05d}: {self.monitor}'
f' was not in top {self.save_top_k}')
else:
if self.verbose > 0:
log.info(f'\nEpoch {epoch:05d}: saving model to {filepath}')
self._save_model(filepath)
def _do_check_save(self, filepath, current, epoch):
# remove kth
if len(self.best_k_models) == self.save_top_k:
delpath = self.kth_best_model
self.best_k_models.pop(self.kth_best_model)
self._del_model(delpath)
self.best_k_models[filepath] = current
if len(self.best_k_models) == self.save_top_k:
# monitor dict has reached k elements
_op = max if self.mode == 'min' else min
self.kth_best_model = _op(self.best_k_models,
key=self.best_k_models.get)
self.kth_value = self.best_k_models[self.kth_best_model]
_op = min if self.mode == 'min' else max
self.best = _op(self.best_k_models.values())
if self.verbose > 0:
log.info(
f'\nEpoch {epoch:05d}: {self.monitor} reached'
f' {current:0.5f} (best {self.best:0.5f}), saving model to'
f' {filepath} as top {self.save_top_k}')
self._save_model(filepath)