lightning/tests/trainer/connectors/test_callback_connector.py

217 lines
7.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import torch
from pytorch_lightning import Callback, LightningModule, Trainer
from pytorch_lightning.callbacks import (
EarlyStopping,
GradientAccumulationScheduler,
LearningRateMonitor,
ModelCheckpoint,
ModelSummary,
ProgressBarBase,
TQDMProgressBar,
)
from pytorch_lightning.trainer.connectors.callback_connector import CallbackConnector
from tests.helpers import BoringModel
def test_checkpoint_callbacks_are_last(tmpdir):
"""Test that checkpoint callbacks always get moved to the end of the list, with preserved order."""
checkpoint1 = ModelCheckpoint(tmpdir)
checkpoint2 = ModelCheckpoint(tmpdir)
model_summary = ModelSummary()
early_stopping = EarlyStopping(monitor="foo")
lr_monitor = LearningRateMonitor()
progress_bar = TQDMProgressBar()
# no model reference
trainer = Trainer(callbacks=[checkpoint1, progress_bar, lr_monitor, model_summary, checkpoint2])
assert trainer.callbacks == [
progress_bar,
lr_monitor,
model_summary,
trainer.accumulation_scheduler,
checkpoint1,
checkpoint2,
]
# no model callbacks
model = LightningModule()
model.configure_callbacks = lambda: []
trainer.model = model
cb_connector = CallbackConnector(trainer)
cb_connector._attach_model_callbacks()
assert trainer.callbacks == [
progress_bar,
lr_monitor,
model_summary,
trainer.accumulation_scheduler,
checkpoint1,
checkpoint2,
]
# with model-specific callbacks that substitute ones in Trainer
model = LightningModule()
model.configure_callbacks = lambda: [checkpoint1, early_stopping, model_summary, checkpoint2]
trainer = Trainer(callbacks=[progress_bar, lr_monitor, ModelCheckpoint(tmpdir)])
trainer.model = model
cb_connector = CallbackConnector(trainer)
cb_connector._attach_model_callbacks()
assert trainer.callbacks == [
progress_bar,
lr_monitor,
trainer.accumulation_scheduler,
early_stopping,
model_summary,
checkpoint1,
checkpoint2,
]
class StatefulCallback0(Callback):
def state_dict(self):
return {"content0": 0}
class StatefulCallback1(Callback):
def __init__(self, unique=None, other=None):
self._unique = unique
self._other = other
@property
def state_key(self):
return self._generate_state_key(unique=self._unique)
def state_dict(self):
return {"content1": self._unique}
def test_all_callback_states_saved_before_checkpoint_callback(tmpdir):
"""Test that all callback states get saved even if the ModelCheckpoint is not given as last and when there are
multiple callbacks of the same type."""
callback0 = StatefulCallback0()
callback1 = StatefulCallback1(unique="one")
callback2 = StatefulCallback1(unique="two", other=2)
checkpoint_callback = ModelCheckpoint(dirpath=tmpdir, filename="all_states")
model = BoringModel()
trainer = Trainer(
default_root_dir=tmpdir,
max_steps=1,
limit_val_batches=1,
callbacks=[
callback0,
# checkpoint callback does not have to be at the end
checkpoint_callback,
# callback2 and callback3 have the same type
callback1,
callback2,
],
)
trainer.fit(model)
ckpt = torch.load(str(tmpdir / "all_states.ckpt"))
state0 = ckpt["callbacks"]["StatefulCallback0"]
state1 = ckpt["callbacks"]["StatefulCallback1{'unique': 'one'}"]
state2 = ckpt["callbacks"]["StatefulCallback1{'unique': 'two'}"]
assert "content0" in state0 and state0["content0"] == 0
assert "content1" in state1 and state1["content1"] == "one"
assert "content1" in state2 and state2["content1"] == "two"
assert (
"ModelCheckpoint{'monitor': None, 'mode': 'min', 'every_n_train_steps': 0, 'every_n_epochs': 1,"
" 'train_time_interval': None, 'save_on_train_epoch_end': True}" in ckpt["callbacks"]
)
def test_attach_model_callbacks():
"""Test that the callbacks defined in the model and through Trainer get merged correctly."""
def _attach_callbacks(trainer_callbacks, model_callbacks):
model = LightningModule()
model.configure_callbacks = lambda: model_callbacks
has_progress_bar = any(isinstance(cb, ProgressBarBase) for cb in trainer_callbacks + model_callbacks)
trainer = Trainer(
enable_checkpointing=False,
enable_progress_bar=has_progress_bar,
enable_model_summary=False,
callbacks=trainer_callbacks,
)
trainer.model = model
cb_connector = CallbackConnector(trainer)
cb_connector._attach_model_callbacks()
return trainer
early_stopping = EarlyStopping(monitor="foo")
progress_bar = TQDMProgressBar()
lr_monitor = LearningRateMonitor()
grad_accumulation = GradientAccumulationScheduler({1: 1})
# no callbacks
trainer = _attach_callbacks(trainer_callbacks=[], model_callbacks=[])
assert trainer.callbacks == [trainer.accumulation_scheduler]
# callbacks of different types
trainer = _attach_callbacks(trainer_callbacks=[early_stopping], model_callbacks=[progress_bar])
assert trainer.callbacks == [early_stopping, trainer.accumulation_scheduler, progress_bar]
# same callback type twice, different instance
trainer = _attach_callbacks(
trainer_callbacks=[progress_bar, EarlyStopping(monitor="foo")],
model_callbacks=[early_stopping],
)
assert trainer.callbacks == [progress_bar, trainer.accumulation_scheduler, early_stopping]
# multiple callbacks of the same type in trainer
trainer = _attach_callbacks(
trainer_callbacks=[
LearningRateMonitor(),
EarlyStopping(monitor="foo"),
LearningRateMonitor(),
EarlyStopping(monitor="foo"),
],
model_callbacks=[early_stopping, lr_monitor],
)
assert trainer.callbacks == [trainer.accumulation_scheduler, early_stopping, lr_monitor]
# multiple callbacks of the same type, in both trainer and model
trainer = _attach_callbacks(
trainer_callbacks=[
LearningRateMonitor(),
progress_bar,
EarlyStopping(monitor="foo"),
LearningRateMonitor(),
EarlyStopping(monitor="foo"),
],
model_callbacks=[early_stopping, lr_monitor, grad_accumulation, early_stopping],
)
assert trainer.callbacks == [progress_bar, early_stopping, lr_monitor, grad_accumulation, early_stopping]
def test_attach_model_callbacks_override_info(caplog):
"""Test that the logs contain the info about overriding callbacks returned by configure_callbacks."""
model = LightningModule()
model.configure_callbacks = lambda: [LearningRateMonitor(), EarlyStopping(monitor="foo")]
trainer = Trainer(
enable_checkpointing=False, callbacks=[EarlyStopping(monitor="foo"), LearningRateMonitor(), TQDMProgressBar()]
)
trainer.model = model
cb_connector = CallbackConnector(trainer)
with caplog.at_level(logging.INFO):
cb_connector._attach_model_callbacks()
assert "existing callbacks passed to Trainer: EarlyStopping, LearningRateMonitor" in caplog.text