lightning/tests/tests_pytorch/accelerators/test_mps.py

165 lines
6.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from collections import namedtuple
import pytest
import torch
import tests_pytorch.helpers.pipelines as tpipes
from pytorch_lightning import Trainer
from pytorch_lightning.accelerators import MPSAccelerator
from pytorch_lightning.demos.boring_classes import BoringModel
from pytorch_lightning.utilities.imports import _TORCHTEXT_LEGACY
from tests_pytorch.helpers.imports import Batch, Dataset, Example, Field, LabelField
from tests_pytorch.helpers.runif import RunIf
@RunIf(mps=True)
def test_get_mps_stats():
current_device = torch.device("mps")
device_stats = MPSAccelerator().get_device_stats(current_device)
fields = ["M1_vm_percent", "M1_percent", "M1_swap_percent"]
for f in fields:
assert any(f in h for h in device_stats.keys())
@RunIf(mps=True)
def test_mps_availability():
assert MPSAccelerator.is_available()
@RunIf(mps=True)
def test_warning_if_mps_not_used():
with pytest.warns(UserWarning, match="MPS available but not used. Set `accelerator` and `devices`"):
Trainer()
@RunIf(mps=True)
@pytest.mark.parametrize("accelerator_value", ["mps", MPSAccelerator()])
def test_trainer_mps_accelerator(accelerator_value):
trainer = Trainer(accelerator=accelerator_value)
assert isinstance(trainer.accelerator, MPSAccelerator)
assert trainer.num_devices == 1
@RunIf(mps=True)
@pytest.mark.parametrize("devices", [1, [0], "-1"])
def test_single_gpu_model(tmpdir, devices):
"""Make sure single GPU works."""
trainer_options = dict(
default_root_dir=tmpdir,
enable_progress_bar=False,
max_epochs=1,
limit_train_batches=0.1,
limit_val_batches=0.1,
accelerator="mps",
devices=devices,
)
model = BoringModel()
tpipes.run_model_test(trainer_options, model)
@RunIf(mps=True)
def test_single_gpu_batch_parse():
trainer = Trainer(accelerator="mps", devices=1)
# non-transferrable types
primitive_objects = [None, {}, [], 1.0, "x", [None, 2], {"x": (1, 2), "y": None}]
for batch in primitive_objects:
data = trainer.strategy.batch_to_device(batch, torch.device("mps"))
assert data == batch
# batch is just a tensor
batch = torch.rand(2, 3)
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
assert batch.device.index == 0 and batch.type() == "torch.mps.FloatTensor"
# tensor list
batch = [torch.rand(2, 3), torch.rand(2, 3)]
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
assert batch[0].device.index == 0 and batch[0].type() == "torch.mps.FloatTensor"
assert batch[1].device.index == 0 and batch[1].type() == "torch.mps.FloatTensor"
# tensor list of lists
batch = [[torch.rand(2, 3), torch.rand(2, 3)]]
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.mps.FloatTensor"
assert batch[0][1].device.index == 0 and batch[0][1].type() == "torch.mps.FloatTensor"
# tensor dict
batch = [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)}]
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
assert batch[0]["a"].device.index == 0 and batch[0]["a"].type() == "torch.mps.FloatTensor"
assert batch[0]["b"].device.index == 0 and batch[0]["b"].type() == "torch.mps.FloatTensor"
# tuple of tensor list and list of tensor dict
batch = ([torch.rand(2, 3) for _ in range(2)], [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)} for _ in range(2)])
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.mps.FloatTensor"
assert batch[1][0]["a"].device.index == 0
assert batch[1][0]["a"].type() == "torch.mps.FloatTensor"
assert batch[1][0]["b"].device.index == 0
assert batch[1][0]["b"].type() == "torch.mps.FloatTensor"
# namedtuple of tensor
BatchType = namedtuple("BatchType", ["a", "b"])
batch = [BatchType(a=torch.rand(2, 3), b=torch.rand(2, 3)) for _ in range(2)]
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
assert batch[0].a.device.index == 0
assert batch[0].a.type() == "torch.mps.FloatTensor"
# non-Tensor that has `.to()` defined
class CustomBatchType:
def __init__(self):
self.a = torch.rand(2, 2)
def to(self, *args, **kwargs):
self.a = self.a.to(*args, **kwargs)
return self
batch = trainer.strategy.batch_to_device(CustomBatchType(), torch.device("mps"))
assert batch.a.type() == "torch.mps.FloatTensor"
# torchtext.data.Batch
if not _TORCHTEXT_LEGACY:
return
samples = [
{"text": "PyTorch Lightning is awesome!", "label": 0},
{"text": "Please make it work with torchtext", "label": 1},
]
text_field = Field()
label_field = LabelField()
fields = {"text": ("text", text_field), "label": ("label", label_field)}
examples = [Example.fromdict(sample, fields) for sample in samples]
dataset = Dataset(examples=examples, fields=fields.values())
# Batch runs field.process() that numericalizes tokens, but it requires to build dictionary first
text_field.build_vocab(dataset)
label_field.build_vocab(dataset)
batch = Batch(data=examples, dataset=dataset)
with pytest.deprecated_call(match="The `torchtext.legacy.Batch` object is deprecated"):
batch = trainer.strategy.batch_to_device(batch, torch.device("mps"))
assert batch.text.type() == "torch.mps.LongTensor"
assert batch.label.type() == "torch.mps.LongTensor"