lightning/tests/parity_fabric/utils.py

60 lines
2.3 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import torch
from lightning.fabric.accelerators.cuda import _clear_cuda_memory
from lightning.fabric.utilities.imports import _TORCH_GREATER_EQUAL_1_12
def is_state_dict_equal(state0, state1):
eq_fn = torch.equal if _TORCH_GREATER_EQUAL_1_12 else torch.allclose
return all(eq_fn(w0.cpu(), w1.cpu()) for w0, w1 in zip(state0.values(), state1.values()))
def is_timing_close(timings_torch, timings_fabric, rtol=1e-2, atol=0.1):
# Drop measurements of the first iterations, as they may be slower than others
# The median is more robust to outliers than the mean
# Given relative and absolute tolerances, we want to satisfy: |torch fabric| < RTOL * torch + ATOL
return bool(torch.isclose(torch.median(timings_torch[3:]), torch.median(timings_fabric[3:]), rtol=rtol, atol=atol))
def is_cuda_memory_close(memory_stats_torch, memory_stats_fabric):
# We require Fabric's peak memory usage to be smaller or equal to that of PyTorch
return memory_stats_torch["allocated_bytes.all.peak"] >= memory_stats_fabric["allocated_bytes.all.peak"]
def make_deterministic(warn_only=False):
os.environ["CUBLAS_WORKSPACE_CONFIG"] = ":4096:8"
torch.use_deterministic_algorithms(True, warn_only=warn_only)
torch.backends.cudnn.benchmark = False
torch.manual_seed(1)
torch.cuda.manual_seed(1)
def get_model_input_dtype(precision):
if precision in ("16-mixed", "16", 16):
return torch.float16
if precision in ("bf16-mixed", "bf16"):
return torch.bfloat16
if precision in ("64-true", "64", 64):
return torch.double
return torch.float32
def cuda_reset():
if torch.cuda.is_available():
_clear_cuda_memory()
torch.cuda.reset_peak_memory_stats()