lightning/tests/helpers/simple_models.py

113 lines
3.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import torch
import torch.nn.functional as F
from torch import nn
from pytorch_lightning import LightningModule
from pytorch_lightning.metrics import Accuracy, MeanSquaredError
class ClassificationModel(LightningModule):
def __init__(self):
super().__init__()
for i in range(3):
setattr(self, f"layer_{i}", nn.Linear(32, 32))
setattr(self, f"layer_{i}a", torch.nn.ReLU())
setattr(self, "layer_end", nn.Linear(32, 3))
self.train_acc = Accuracy()
self.valid_acc = Accuracy()
self.test_acc = Accuracy()
def forward(self, x):
x = self.layer_0(x)
x = self.layer_0a(x)
x = self.layer_1(x)
x = self.layer_1a(x)
x = self.layer_2(x)
x = self.layer_2a(x)
x = self.layer_end(x)
logits = F.softmax(x, dim=1)
return logits
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.01)
return [optimizer], []
def training_step(self, batch, batch_idx):
x, y = batch
logits = self.forward(x)
loss = F.cross_entropy(logits, y)
self.log('train_Acc', self.train_acc(logits, y), prog_bar=True)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
x, y = batch
logits = self.forward(x)
self.log('valid_Acc', self.valid_acc(logits, y), prog_bar=True)
def test_step(self, batch, batch_idx):
x, y = batch
logits = self.forward(x)
self.log('test_Acc', self.test_acc(logits, y), prog_bar=True)
class RegressionModel(LightningModule):
def __init__(self):
super().__init__()
setattr(self, "layer_0", nn.Linear(16, 64))
setattr(self, "layer_0a", torch.nn.ReLU())
for i in range(1, 3):
setattr(self, f"layer_{i}", nn.Linear(64, 64))
setattr(self, f"layer_{i}a", torch.nn.ReLU())
setattr(self, "layer_end", nn.Linear(64, 1))
self.train_mse = MeanSquaredError()
self.valid_mse = MeanSquaredError()
self.test_mse = MeanSquaredError()
def forward(self, x):
x = self.layer_0(x)
x = self.layer_0a(x)
x = self.layer_1(x)
x = self.layer_1a(x)
x = self.layer_2(x)
x = self.layer_2a(x)
x = self.layer_end(x)
return x
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.01)
return [optimizer], []
def training_step(self, batch, batch_idx):
x, y = batch
out = self.forward(x)
loss = F.mse_loss(out, y)
self.log('train_MSE', self.train_mse(out, y), prog_bar=True)
return {"loss": loss}
def validation_step(self, batch, batch_idx):
x, y = batch
out = self.forward(x)
self.log('valid_MSE', self.valid_mse(out, y), prog_bar=True)
def test_step(self, batch, batch_idx):
x, y = batch
out = self.forward(x)
self.log('test_MSE', self.test_mse(out, y), prog_bar=True)