lightning/pytorch_lightning/metrics/functional/r2score.py

132 lines
4.8 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
from pytorch_lightning.metrics.utils import _check_same_shape
from pytorch_lightning.utilities import rank_zero_warn
def _r2score_update(
preds: torch.tensor,
target: torch.Tensor,
) -> Tuple[torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor]:
_check_same_shape(preds, target)
if preds.ndim > 2:
raise ValueError(
'Expected both prediction and target to be 1D or 2D tensors,'
f' but recevied tensors with dimension {preds.shape}'
)
if len(preds) < 2:
raise ValueError('Needs atleast two samples to calculate r2 score.')
sum_error = torch.sum(target, dim=0)
sum_squared_error = torch.sum(torch.pow(target, 2.0), dim=0)
residual = torch.sum(torch.pow(target - preds, 2.0), dim=0)
total = target.size(0)
return sum_squared_error, sum_error, residual, total
def _r2score_compute(
sum_squared_error: torch.Tensor,
sum_error: torch.Tensor,
residual: torch.Tensor,
total: torch.Tensor,
adjusted: int = 0,
multioutput: str = "uniform_average"
) -> torch.Tensor:
mean_error = sum_error / total
diff = sum_squared_error - sum_error * mean_error
raw_scores = 1 - (residual / diff)
if multioutput == "raw_values":
r2score = raw_scores
elif multioutput == "uniform_average":
r2score = torch.mean(raw_scores)
elif multioutput == "variance_weighted":
diff_sum = torch.sum(diff)
r2score = torch.sum(diff / diff_sum * raw_scores)
else:
raise ValueError(
'Argument `multioutput` must be either `raw_values`,'
f' `uniform_average` or `variance_weighted`. Received {multioutput}.'
)
if adjusted < 0 or not isinstance(adjusted, int):
raise ValueError('`adjusted` parameter should be an integer larger or' ' equal to 0.')
if adjusted != 0:
if adjusted > total - 1:
rank_zero_warn(
"More independent regressions than datapoints in"
" adjusted r2 score. Falls back to standard r2 score.", UserWarning
)
elif adjusted == total - 1:
rank_zero_warn("Division by zero in adjusted r2 score. Falls back to" " standard r2 score.", UserWarning)
else:
r2score = 1 - (1 - r2score) * (total - 1) / (total - adjusted - 1)
return r2score
def r2score(
preds: torch.Tensor,
target: torch.Tensor,
adjusted: int = 0,
multioutput: str = "uniform_average",
) -> torch.Tensor:
r"""
Computes r2 score also known as `coefficient of determination
<https://en.wikipedia.org/wiki/Coefficient_of_determination>`_:
.. math:: R^2 = 1 - \frac{SS_res}{SS_tot}
where :math:`SS_res=\sum_i (y_i - f(x_i))^2` is the sum of residual squares, and
:math:`SS_tot=\sum_i (y_i - \bar{y})^2` is total sum of squares. Can also calculate
adjusted r2 score given by
.. math:: R^2_adj = 1 - \frac{(1-R^2)(n-1)}{n-k-1}
where the parameter :math:`k` (the number of independent regressors) should
be provided as the ``adjusted`` argument.
Args:
preds: estimated labels
target: ground truth labels
adjusted: number of independent regressors for calculating adjusted r2 score.
Default 0 (standard r2 score).
multioutput: Defines aggregation in the case of multiple output scores. Can be one
of the following strings (default is ``'uniform_average'``.):
* ``'raw_values'`` returns full set of scores
* ``'uniform_average'`` scores are uniformly averaged
* ``'variance_weighted'`` scores are weighted by their individual variances
Example:
>>> from pytorch_lightning.metrics.functional import r2score
>>> target = torch.tensor([3, -0.5, 2, 7])
>>> preds = torch.tensor([2.5, 0.0, 2, 8])
>>> r2score(preds, target)
tensor(0.9486)
>>> target = torch.tensor([[0.5, 1], [-1, 1], [7, -6]])
>>> preds = torch.tensor([[0, 2], [-1, 2], [8, -5]])
>>> r2score(preds, target, multioutput='raw_values')
tensor([0.9654, 0.9082])
"""
sum_squared_error, sum_error, residual, total = _r2score_update(preds, target)
return _r2score_compute(sum_squared_error, sum_error, residual, total, adjusted, multioutput)