lightning/pytorch_lightning/metrics/functional/auc.py

75 lines
2.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from typing import Tuple
import torch
from pytorch_lightning.metrics.utils import _stable_1d_sort
def _auc_update(x: torch.Tensor, y: torch.Tensor) -> Tuple[torch.Tensor, torch.Tensor]:
if x.ndim > 1 or y.ndim > 1:
raise ValueError(
f'Expected both `x` and `y` tensor to be 1d, but got'
f' tensors with dimention {x.ndim} and {y.ndim}'
)
if x.numel() != y.numel():
raise ValueError(
f'Expected the same number of elements in `x` and `y`'
f' tensor but received {x.numel()} and {y.numel()}'
)
return x, y
def _auc_compute(x: torch.Tensor, y: torch.Tensor, reorder: bool = False) -> torch.Tensor:
if reorder:
x, x_idx = _stable_1d_sort(x)
y = y[x_idx]
dx = x[1:] - x[:-1]
if (dx < 0).any():
if (dx <= 0).all():
direction = -1.
else:
raise ValueError(
"The `x` tensor is neither increasing or decreasing."
" Try setting the reorder argument to `True`."
)
else:
direction = 1.
return direction * torch.trapz(y, x)
def auc(x: torch.Tensor, y: torch.Tensor, reorder: bool = False) -> torch.Tensor:
"""
Computes Area Under the Curve (AUC) using the trapezoidal rule
Args:
x: x-coordinates
y: y-coordinates
reorder: if True, will reorder the arrays
Return:
Tensor containing AUC score (float)
Example:
>>> x = torch.tensor([0, 1, 2, 3])
>>> y = torch.tensor([0, 1, 2, 2])
>>> auc(x, y)
tensor(4.)
"""
x, y = _auc_update(x, y)
return _auc_compute(x, y, reorder=reorder)