lightning/docs/source/loggers.rst

141 lines
3.8 KiB
ReStructuredText

.. testsetup:: *
from pytorch_lightning.core.lightning import LightningModule
from pytorch_lightning.trainer.trainer import Trainer
from pytorch_lightning import loggers as pl_loggers
.. role:: hidden
:class: hidden-section
Loggers
===========
Lightning supports the most popular logging frameworks (TensorBoard, Comet, Weights and Biases, etc...).
To use a logger, simply pass it into the :class:`~pytorch_lightning.trainer.trainer.Trainer`.
Lightning uses TensorBoard by default.
.. testcode::
from pytorch_lightning import loggers as pl_loggers
tb_logger = pl_loggers.TensorBoardLogger('logs/')
trainer = Trainer(logger=tb_logger)
Choose from any of the others such as MLflow, Comet, Neptune, WandB, ...
.. testcode::
comet_logger = pl_loggers.CometLogger(save_dir='logs/')
trainer = Trainer(logger=comet_logger)
To use multiple loggers, simply pass in a ``list`` or ``tuple`` of loggers ...
.. testcode::
tb_logger = pl_loggers.TensorBoardLogger('logs/')
comet_logger = pl_loggers.CometLogger(save_dir='logs/')
trainer = Trainer(logger=[tb_logger, comet_logger])
Note:
All loggers log by default to ``os.getcwd()``. To change the path without creating a logger set
``Trainer(default_root_dir='/your/path/to/save/checkpoints')``
----------
Custom Logger
-------------
You can implement your own logger by writing a class that inherits from
:class:`LightningLoggerBase`. Use the :func:`~pytorch_lightning.loggers.base.rank_zero_only`
decorator to make sure that only the first process in DDP training logs data.
.. testcode::
from pytorch_lightning.utilities import rank_zero_only
from pytorch_lightning.loggers import LightningLoggerBase
class MyLogger(LightningLoggerBase):
@rank_zero_only
def log_hyperparams(self, params):
# params is an argparse.Namespace
# your code to record hyperparameters goes here
pass
@rank_zero_only
def log_metrics(self, metrics, step):
# metrics is a dictionary of metric names and values
# your code to record metrics goes here
pass
def save(self):
# Optional. Any code necessary to save logger data goes here
pass
@rank_zero_only
def finalize(self, status):
# Optional. Any code that needs to be run after training
# finishes goes here
pass
If you write a logger that may be useful to others, please send
a pull request to add it to Lighting!
----------
Using loggers
-------------
Call the logger anywhere except ``__init__`` in your
:class:`~pytorch_lightning.core.lightning.LightningModule` by doing:
.. testcode::
class LitModel(LightningModule):
def training_step(self, batch, batch_idx):
# example
self.logger.experiment.whatever_method_summary_writer_supports(...)
# example if logger is a tensorboard logger
self.logger.experiment.add_image('images', grid, 0)
self.logger.experiment.add_graph(model, images)
def any_lightning_module_function_or_hook(self):
self.logger.experiment.add_histogram(...)
Read more in the `Experiment Logging use case <./experiment_logging.html>`_.
------
Supported Loggers
-----------------
The following are loggers we support
Comet
^^^^^
.. autoclass:: pytorch_lightning.loggers.comet.CometLogger
:noindex:
MLFlow
^^^^^^
.. autoclass:: pytorch_lightning.loggers.mlflow.MLFlowLogger
:noindex:
Neptune
^^^^^^^
.. autoclass:: pytorch_lightning.loggers.neptune.NeptuneLogger
:noindex:
Tensorboard
^^^^^^^^^^^^
.. autoclass:: pytorch_lightning.loggers.tensorboard.TensorBoardLogger
:noindex:
Test-tube
^^^^^^^^^
.. autoclass:: pytorch_lightning.loggers.test_tube.TestTubeLogger
:noindex: