36 lines
943 B
Python
36 lines
943 B
Python
import torch
|
|
from tests.base.boring_model import BoringModel, RandomDataset
|
|
from pytorch_lightning import Trainer
|
|
|
|
|
|
def test_overfit_multiple_val_loaders(tmpdir):
|
|
"""
|
|
Tests that only training_step can be used
|
|
"""
|
|
class TestModel(BoringModel):
|
|
|
|
def validation_step(self, batch, batch_idx, dataloader_idx):
|
|
output = self.layer(batch[0])
|
|
loss = self.loss(batch, output)
|
|
return {"x": loss}
|
|
|
|
def validation_epoch_end(self, outputs) -> None:
|
|
pass
|
|
|
|
def val_dataloader(self):
|
|
dl1 = torch.utils.data.DataLoader(RandomDataset(32, 64))
|
|
dl2 = torch.utils.data.DataLoader(RandomDataset(32, 64))
|
|
return [dl1, dl2]
|
|
|
|
model = TestModel()
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=2,
|
|
overfit_batches=1,
|
|
row_log_interval=1,
|
|
weights_summary=None,
|
|
)
|
|
|
|
trainer.fit(model)
|