lightning/tests/metrics/test_sklearn.py

179 lines
7.9 KiB
Python

import numbers
from functools import partial
import numpy as np
import pytest
import torch
from sklearn.metrics import (
accuracy_score as sk_accuracy,
precision_score as sk_precision,
recall_score as sk_recall,
f1_score as sk_f1_score,
fbeta_score as sk_fbeta_score,
confusion_matrix as sk_confusion_matrix,
average_precision_score as sk_average_precision,
auc as sk_auc,
precision_recall_curve as sk_precision_recall_curve,
roc_curve as sk_roc_curve,
roc_auc_score as sk_roc_auc_score,
balanced_accuracy_score as sk_balanced_accuracy_score,
dcg_score as sk_dcg_score,
mean_absolute_error as sk_mean_absolute_error,
mean_squared_error as sk_mean_squared_error,
mean_squared_log_error as sk_mean_squared_log_error,
median_absolute_error as sk_median_absolute_error,
r2_score as sk_r2_score,
mean_poisson_deviance as sk_mean_poisson_deviance,
mean_gamma_deviance as sk_mean_gamma_deviance,
mean_tweedie_deviance as sk_mean_tweedie_deviance,
explained_variance_score as sk_explained_variance_score,
cohen_kappa_score as sk_cohen_kappa_score,
hamming_loss as sk_hamming_loss,
hinge_loss as sk_hinge_loss,
jaccard_score as sk_jaccard_score
)
from pytorch_lightning.metrics.converters import convert_to_numpy
from pytorch_lightning.metrics.sklearns import (
Accuracy,
AUC,
AveragePrecision,
BalancedAccuracy,
ConfusionMatrix,
CohenKappaScore,
DCG,
F1,
FBeta,
Hamming,
Hinge,
Jaccard,
Precision,
Recall,
PrecisionRecallCurve,
ROC,
AUROC,
MeanAbsoluteError,
MeanSquaredError,
MeanSquaredLogError,
MedianAbsoluteError,
R2Score,
MeanPoissonDeviance,
MeanGammaDeviance,
MeanTweedieDeviance,
ExplainedVariance,
)
from pytorch_lightning.utilities.apply_func import apply_to_collection
def _xy_only(func):
def new_func(*args, **kwargs):
return np.array(func(*args, **kwargs)[:2])
return new_func
@pytest.mark.parametrize(['metric_class', 'sklearn_func', 'inputs'], [
pytest.param(Accuracy(), sk_accuracy,
{'y_pred': torch.randint(10, size=(128,)),
'y_true': torch.randint(10, size=(128,))},
id='Accuracy'),
pytest.param(AUC(), sk_auc,
{'x': torch.arange(10, dtype=torch.float) / 10,
'y': torch.tensor([0.2, 0.2, 0.2, 0.2, 0.2, 0.2, 0.3, 0.5, 0.6, 0.7])},
id='AUC'),
pytest.param(AveragePrecision(), sk_average_precision,
{'y_score': torch.randint(2, size=(128,)),
'y_true': torch.randint(2, size=(128,))},
id='AveragePrecision'),
pytest.param(ConfusionMatrix(), sk_confusion_matrix,
{'y_pred': torch.randint(10, size=(128,)),
'y_true': torch.randint(10, size=(128,))},
id='ConfusionMatrix'),
pytest.param(F1(average='macro'), partial(sk_f1_score, average='macro'),
{'y_pred': torch.randint(10, size=(128,)),
'y_true': torch.randint(10, size=(128,))},
id='F1'),
pytest.param(FBeta(beta=0.5, average='macro'), partial(sk_fbeta_score, beta=0.5, average='macro'),
{'y_pred': torch.randint(10, size=(128,)),
'y_true': torch.randint(10, size=(128,))},
id='FBeta'),
pytest.param(Precision(average='macro'), partial(sk_precision, average='macro'),
{'y_pred': torch.randint(10, size=(128,)),
'y_true': torch.randint(10, size=(128,))},
id='Precision'),
pytest.param(Recall(average='macro'), partial(sk_recall, average='macro'),
{'y_pred': torch.randint(10, size=(128,)),
'y_true': torch.randint(10, size=(128,))},
id='Recall'),
pytest.param(PrecisionRecallCurve(), _xy_only(sk_precision_recall_curve),
{'probas_pred': torch.rand(size=(128,)),
'y_true': torch.randint(2, size=(128,))},
id='PrecisionRecallCurve'),
pytest.param(ROC(), _xy_only(sk_roc_curve),
{'y_score': torch.rand(size=(128,)),
'y_true': torch.randint(2, size=(128,))},
id='ROC'),
pytest.param(AUROC(), sk_roc_auc_score,
{'y_score': torch.rand(size=(128,)),
'y_true': torch.randint(2, size=(128,))},
id='AUROC'),
pytest.param(BalancedAccuracy(), sk_balanced_accuracy_score,
{'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))},
id='BalancedAccuracy'),
pytest.param(DCG(), sk_dcg_score,
{'y_score': torch.rand(size=(128, 3)), 'y_true': torch.randint(3, size=(128, 3))},
id='DCG'),
pytest.param(ExplainedVariance(), sk_explained_variance_score,
{'y_pred': torch.rand(size=(128,)), 'y_true': torch.rand(size=(128,))},
id='ExplainedVariance'),
pytest.param(MeanAbsoluteError(), sk_mean_absolute_error,
{'y_pred': torch.rand(size=(128,)), 'y_true': torch.rand(size=(128,))},
id='MeanAbsolutError'),
pytest.param(MeanSquaredError(), sk_mean_squared_error,
{'y_pred': torch.rand(size=(128,)), 'y_true': torch.rand(size=(128,))},
id='MeanSquaredError'),
pytest.param(MeanSquaredLogError(), sk_mean_squared_log_error,
{'y_pred': torch.rand(size=(128,)), 'y_true': torch.rand(size=(128,))},
id='MeanSquaredLogError'),
pytest.param(MedianAbsoluteError(), sk_median_absolute_error,
{'y_pred': torch.rand(size=(128,)), 'y_true': torch.rand(size=(128,))},
id='MedianAbsoluteError'),
pytest.param(R2Score(), sk_r2_score,
{'y_pred': torch.rand(size=(128,)), 'y_true': torch.rand(size=(128,))},
id='R2Score'),
pytest.param(MeanPoissonDeviance(), sk_mean_poisson_deviance,
{'y_pred': torch.rand(size=(128,)), 'y_true': torch.rand(size=(128,))},
id='MeanPoissonDeviance'),
pytest.param(MeanGammaDeviance(), sk_mean_gamma_deviance,
{'y_pred': torch.rand(size=(128,)), 'y_true': torch.rand(size=(128,))},
id='MeanGammaDeviance'),
pytest.param(MeanTweedieDeviance(), sk_mean_tweedie_deviance,
{'y_pred': torch.rand(size=(128,)), 'y_true': torch.rand(size=(128,))},
id='MeanTweedieDeviance'),
pytest.param(CohenKappaScore(), sk_cohen_kappa_score,
{'y1': torch.randint(3, size=(128,)), 'y2': torch.randint(3, size=(128,))},
id='CohenKappaScore'),
pytest.param(Hamming(), sk_hamming_loss,
{'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))},
id='Hamming'),
pytest.param(Hinge(), sk_hinge_loss,
{'pred_decision': torch.randn(size=(128,)), 'y_true': torch.randint(2, size=(128,))},
id='Hinge'),
pytest.param(Jaccard(average='macro'), partial(sk_jaccard_score, average='macro'),
{'y_pred': torch.randint(10, size=(128,)), 'y_true': torch.randint(10, size=(128,))},
id='Jaccard')
])
def test_sklearn_metric(metric_class, sklearn_func, inputs):
numpy_inputs = apply_to_collection(inputs, (torch.Tensor, np.ndarray, numbers.Number), convert_to_numpy)
sklearn_result = sklearn_func(**numpy_inputs)
lightning_result = metric_class(**inputs)
sklearn_result = apply_to_collection(
sklearn_result, (torch.Tensor, np.ndarray, numbers.Number), convert_to_numpy)
lightning_result = np.array(apply_to_collection(
lightning_result, (torch.Tensor, np.ndarray, numbers.Number), convert_to_numpy))
assert np.allclose(sklearn_result, lightning_result, atol=1e-5)
assert isinstance(lightning_result, type(sklearn_result))