101 lines
3.7 KiB
Python
101 lines
3.7 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from typing import Any, Callable, Dict, Optional, Union
|
|
|
|
from torch import Tensor
|
|
from torch.nn import Module
|
|
from torch.optim import LBFGS, Optimizer
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.plugins.precision.mixed import MixedPrecisionPlugin
|
|
from pytorch_lightning.utilities import _APEX_AVAILABLE, AMPType
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from pytorch_lightning.utilities.types import _PARAMETERS
|
|
|
|
if _APEX_AVAILABLE:
|
|
from apex import amp
|
|
|
|
|
|
class ApexMixedPrecisionPlugin(MixedPrecisionPlugin):
|
|
"""Mixed Precision Plugin based on Nvidia/Apex (https://github.com/NVIDIA/apex)"""
|
|
|
|
backend = AMPType.APEX
|
|
|
|
def __init__(self, amp_level: str = "O2") -> None:
|
|
if not _APEX_AVAILABLE:
|
|
raise MisconfigurationException(
|
|
"You have asked for Apex AMP but you have not installed it."
|
|
" Install `apex` using this guide: https://github.com/NVIDIA/apex"
|
|
)
|
|
super().__init__()
|
|
self.amp_level = amp_level
|
|
self._connected = False
|
|
|
|
def main_params(self, optimizer: Optimizer) -> _PARAMETERS:
|
|
return amp.master_params(optimizer)
|
|
|
|
def dispatch(self, trainer: "pl.Trainer") -> None:
|
|
if not self._connected:
|
|
strategy = trainer.strategy
|
|
_, strategy.optimizers = amp.initialize(
|
|
trainer.lightning_module, strategy.optimizers, opt_level=self.amp_level
|
|
)
|
|
self._connected = True
|
|
return super().dispatch(trainer)
|
|
|
|
def backward(
|
|
self,
|
|
model: "pl.LightningModule",
|
|
closure_loss: Tensor,
|
|
optimizer: Optional[Optimizer],
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> None:
|
|
"""Run before precision plugin executes backward.
|
|
|
|
Args:
|
|
model: the model to be optimized
|
|
closure_loss: the loss value obtained from the closure
|
|
optimizer: current optimizer being used. ``None`` if using manual optimization
|
|
"""
|
|
opt = optimizer or model.trainer.optimizers
|
|
with amp.scale_loss(closure_loss, opt) as closure_loss:
|
|
super().backward(model, closure_loss, optimizer, *args, **kwargs)
|
|
|
|
def optimizer_step(
|
|
self,
|
|
model: Union["pl.LightningModule", Module],
|
|
optimizer: Optimizer,
|
|
optimizer_idx: int,
|
|
closure: Callable[[], Any],
|
|
**kwargs: Any,
|
|
) -> Any:
|
|
if isinstance(optimizer, LBFGS):
|
|
raise MisconfigurationException(
|
|
f"apex AMP and the LBFGS optimizer are not compatible (optimizer {optimizer_idx})."
|
|
)
|
|
closure_result = closure()
|
|
self._after_closure(model, optimizer, optimizer_idx)
|
|
skipped_backward = closure_result is None
|
|
# in manual optimization, the closure does not return a value
|
|
if not isinstance(model, pl.LightningModule) or not model.automatic_optimization or not skipped_backward:
|
|
return optimizer.step(**kwargs)
|
|
return closure_result
|
|
|
|
def state_dict(self) -> Dict[str, Any]:
|
|
return amp.state_dict()
|
|
|
|
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
|
|
amp.load_state_dict(state_dict)
|