420 lines
16 KiB
Python
420 lines
16 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
import ast
|
|
import csv
|
|
import inspect
|
|
import logging
|
|
import os
|
|
from argparse import Namespace
|
|
from copy import deepcopy
|
|
from enum import Enum
|
|
from typing import Any, Callable, Dict, IO, MutableMapping, Optional, Union
|
|
from warnings import warn
|
|
|
|
import torch
|
|
import yaml
|
|
|
|
from pytorch_lightning.utilities import _OMEGACONF_AVAILABLE, AttributeDict
|
|
from pytorch_lightning.utilities.apply_func import apply_to_collection
|
|
from pytorch_lightning.utilities.cloud_io import get_filesystem
|
|
from pytorch_lightning.utilities.cloud_io import load as pl_load
|
|
from pytorch_lightning.utilities.migration import pl_legacy_patch
|
|
from pytorch_lightning.utilities.parsing import parse_class_init_keys
|
|
from pytorch_lightning.utilities.rank_zero import rank_zero_warn
|
|
|
|
log = logging.getLogger(__name__)
|
|
PRIMITIVE_TYPES = (bool, int, float, str)
|
|
ALLOWED_CONFIG_TYPES = (AttributeDict, MutableMapping, Namespace)
|
|
|
|
if _OMEGACONF_AVAILABLE:
|
|
from omegaconf import OmegaConf
|
|
from omegaconf.dictconfig import DictConfig
|
|
from omegaconf.errors import UnsupportedValueType, ValidationError
|
|
|
|
# the older shall be on the top
|
|
CHECKPOINT_PAST_HPARAMS_KEYS = ("hparams", "module_arguments") # used in 0.7.6
|
|
|
|
|
|
class ModelIO:
|
|
CHECKPOINT_HYPER_PARAMS_KEY = "hyper_parameters"
|
|
CHECKPOINT_HYPER_PARAMS_NAME = "hparams_name"
|
|
CHECKPOINT_HYPER_PARAMS_TYPE = "hparams_type"
|
|
|
|
@classmethod
|
|
def load_from_checkpoint(
|
|
cls,
|
|
checkpoint_path: Union[str, IO],
|
|
map_location: Optional[Union[Dict[str, str], str, torch.device, int, Callable]] = None,
|
|
hparams_file: Optional[str] = None,
|
|
strict: bool = True,
|
|
**kwargs,
|
|
):
|
|
r"""
|
|
Primary way of loading a model from a checkpoint. When Lightning saves a checkpoint
|
|
it stores the arguments passed to ``__init__`` in the checkpoint under ``"hyper_parameters"``.
|
|
|
|
Any arguments specified through \*\*kwargs will override args stored in ``"hyper_parameters"``.
|
|
|
|
Args:
|
|
checkpoint_path: Path to checkpoint. This can also be a URL, or file-like object
|
|
map_location:
|
|
If your checkpoint saved a GPU model and you now load on CPUs
|
|
or a different number of GPUs, use this to map to the new setup.
|
|
The behaviour is the same as in :func:`torch.load`.
|
|
hparams_file: Optional path to a .yaml file with hierarchical structure
|
|
as in this example::
|
|
|
|
drop_prob: 0.2
|
|
dataloader:
|
|
batch_size: 32
|
|
|
|
You most likely won't need this since Lightning will always save the hyperparameters
|
|
to the checkpoint.
|
|
However, if your checkpoint weights don't have the hyperparameters saved,
|
|
use this method to pass in a .yaml file with the hparams you'd like to use.
|
|
These will be converted into a :class:`~dict` and passed into your
|
|
:class:`LightningModule` for use.
|
|
|
|
If your model's ``hparams`` argument is :class:`~argparse.Namespace`
|
|
and .yaml file has hierarchical structure, you need to refactor your model to treat
|
|
``hparams`` as :class:`~dict`.
|
|
strict: Whether to strictly enforce that the keys in :attr:`checkpoint_path` match the keys
|
|
returned by this module's state dict.
|
|
kwargs: Any extra keyword args needed to init the model. Can also be used to override saved
|
|
hyperparameter values.
|
|
|
|
Return:
|
|
:class:`LightningModule` instance with loaded weights and hyperparameters (if available).
|
|
|
|
Note:
|
|
``load_from_checkpoint`` is a **class** method. You should use your :class:`LightningModule`
|
|
**class** to call it instead of the :class:`LightningModule` instance.
|
|
|
|
Example::
|
|
|
|
# load weights without mapping ...
|
|
model = MyLightningModule.load_from_checkpoint('path/to/checkpoint.ckpt')
|
|
|
|
# or load weights mapping all weights from GPU 1 to GPU 0 ...
|
|
map_location = {'cuda:1':'cuda:0'}
|
|
model = MyLightningModule.load_from_checkpoint(
|
|
'path/to/checkpoint.ckpt',
|
|
map_location=map_location
|
|
)
|
|
|
|
# or load weights and hyperparameters from separate files.
|
|
model = MyLightningModule.load_from_checkpoint(
|
|
'path/to/checkpoint.ckpt',
|
|
hparams_file='/path/to/hparams_file.yaml'
|
|
)
|
|
|
|
# override some of the params with new values
|
|
model = MyLightningModule.load_from_checkpoint(
|
|
PATH,
|
|
num_layers=128,
|
|
pretrained_ckpt_path=NEW_PATH,
|
|
)
|
|
|
|
# predict
|
|
pretrained_model.eval()
|
|
pretrained_model.freeze()
|
|
y_hat = pretrained_model(x)
|
|
"""
|
|
with pl_legacy_patch():
|
|
if map_location is not None:
|
|
checkpoint = pl_load(checkpoint_path, map_location=map_location)
|
|
else:
|
|
checkpoint = pl_load(checkpoint_path, map_location=lambda storage, loc: storage)
|
|
|
|
if hparams_file is not None:
|
|
extension = hparams_file.split(".")[-1]
|
|
if extension.lower() == "csv":
|
|
hparams = load_hparams_from_tags_csv(hparams_file)
|
|
elif extension.lower() in ("yml", "yaml"):
|
|
hparams = load_hparams_from_yaml(hparams_file)
|
|
else:
|
|
raise ValueError(".csv, .yml or .yaml is required for `hparams_file`")
|
|
|
|
hparams["on_gpu"] = False
|
|
|
|
# overwrite hparams by the given file
|
|
checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY] = hparams
|
|
|
|
# for past checkpoint need to add the new key
|
|
if cls.CHECKPOINT_HYPER_PARAMS_KEY not in checkpoint:
|
|
checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY] = {}
|
|
# override the hparams with values that were passed in
|
|
checkpoint[cls.CHECKPOINT_HYPER_PARAMS_KEY].update(kwargs)
|
|
|
|
model = cls._load_model_state(checkpoint, strict=strict, **kwargs)
|
|
return model
|
|
|
|
@classmethod
|
|
def _load_model_state(cls, checkpoint: Dict[str, Any], strict: bool = True, **cls_kwargs_new):
|
|
cls_spec = inspect.getfullargspec(cls.__init__)
|
|
cls_init_args_name = inspect.signature(cls.__init__).parameters.keys()
|
|
|
|
self_var, args_var, kwargs_var = parse_class_init_keys(cls)
|
|
drop_names = [n for n in (self_var, args_var, kwargs_var) if n]
|
|
cls_init_args_name = list(filter(lambda n: n not in drop_names, cls_init_args_name))
|
|
|
|
cls_kwargs_loaded = {}
|
|
# pass in the values we saved automatically
|
|
if cls.CHECKPOINT_HYPER_PARAMS_KEY in checkpoint:
|
|
|
|
# 1. (backward compatibility) Try to restore model hparams from checkpoint using old/past keys
|
|
for _old_hparam_key in CHECKPOINT_PAST_HPARAMS_KEYS:
|
|
cls_kwargs_loaded.update(checkpoint.get(_old_hparam_key, {}))
|
|
|
|
# 2. Try to restore model hparams from checkpoint using the new key
|
|
_new_hparam_key = cls.CHECKPOINT_HYPER_PARAMS_KEY
|
|
cls_kwargs_loaded.update(checkpoint.get(_new_hparam_key))
|
|
|
|
# 3. Ensure that `cls_kwargs_old` has the right type, back compatibility between dict and Namespace
|
|
cls_kwargs_loaded = _convert_loaded_hparams(
|
|
cls_kwargs_loaded, checkpoint.get(cls.CHECKPOINT_HYPER_PARAMS_TYPE)
|
|
)
|
|
|
|
# 4. Update cls_kwargs_new with cls_kwargs_old, such that new has higher priority
|
|
args_name = checkpoint.get(cls.CHECKPOINT_HYPER_PARAMS_NAME)
|
|
if args_name and args_name in cls_init_args_name:
|
|
cls_kwargs_loaded = {args_name: cls_kwargs_loaded}
|
|
|
|
_cls_kwargs = {}
|
|
_cls_kwargs.update(cls_kwargs_loaded)
|
|
_cls_kwargs.update(cls_kwargs_new)
|
|
|
|
if not cls_spec.varkw:
|
|
# filter kwargs according to class init unless it allows any argument via kwargs
|
|
_cls_kwargs = {k: v for k, v in _cls_kwargs.items() if k in cls_init_args_name}
|
|
|
|
model = cls(**_cls_kwargs)
|
|
|
|
# give model a chance to load something
|
|
model.on_load_checkpoint(checkpoint)
|
|
|
|
# load the state_dict on the model automatically
|
|
keys = model.load_state_dict(checkpoint["state_dict"], strict=strict)
|
|
|
|
if not strict:
|
|
if keys.missing_keys:
|
|
rank_zero_warn(
|
|
f"Found keys that are in the model state dict but not in the checkpoint: {keys.missing_keys}"
|
|
)
|
|
if keys.unexpected_keys:
|
|
rank_zero_warn(
|
|
f"Found keys that are not in the model state dict but in the checkpoint: {keys.unexpected_keys}"
|
|
)
|
|
|
|
return model
|
|
|
|
# -------------------------
|
|
# OPTIONAL HOOKS
|
|
# -------------------------
|
|
def on_hpc_save(self, checkpoint: Dict[str, Any]) -> None:
|
|
"""Hook to do whatever you need right before Slurm manager saves the model.
|
|
|
|
Args:
|
|
checkpoint: A dictionary in which you can save variables to save in a checkpoint.
|
|
Contents need to be pickleable.
|
|
|
|
.. deprecated:: v1.6
|
|
This method is deprecated in v1.6 and will be removed in v1.8.
|
|
Please use ``LightningModule.on_save_checkpoint`` instead.
|
|
"""
|
|
|
|
def on_hpc_load(self, checkpoint: Dict[str, Any]) -> None:
|
|
"""Hook to do whatever you need right before Slurm manager loads the model.
|
|
|
|
Args:
|
|
checkpoint: A dictionary with variables from the checkpoint.
|
|
|
|
.. deprecated:: v1.6
|
|
This method is deprecated in v1.6 and will be removed in v1.8.
|
|
Please use ``LightningModule.on_load_checkpoint`` instead.
|
|
"""
|
|
|
|
|
|
def _convert_loaded_hparams(model_args: dict, hparams_type: Optional[Union[Callable, str]] = None) -> object:
|
|
"""Convert hparams according given type in callable or string (past) format."""
|
|
# if not hparams type define
|
|
if not hparams_type:
|
|
return model_args
|
|
# if past checkpoint loaded, convert str to callable
|
|
if isinstance(hparams_type, str):
|
|
hparams_type = AttributeDict
|
|
# convert hparams
|
|
return hparams_type(model_args)
|
|
|
|
|
|
def update_hparams(hparams: dict, updates: dict) -> None:
|
|
"""Overrides hparams with new values.
|
|
|
|
>>> hparams = {'c': 4}
|
|
>>> update_hparams(hparams, {'a': {'b': 2}, 'c': 1})
|
|
>>> hparams['a']['b'], hparams['c']
|
|
(2, 1)
|
|
>>> update_hparams(hparams, {'a': {'b': 4}, 'c': 7})
|
|
>>> hparams['a']['b'], hparams['c']
|
|
(4, 7)
|
|
|
|
Args:
|
|
hparams: the original params and also target object
|
|
updates: new params to be used as update
|
|
"""
|
|
for k, v in updates.items():
|
|
# if missing, add the key
|
|
if k not in hparams:
|
|
hparams[k] = v
|
|
continue
|
|
|
|
# recurse if dictionary
|
|
if isinstance(v, dict):
|
|
update_hparams(hparams[k], updates[k])
|
|
else:
|
|
# update the value
|
|
hparams.update({k: v})
|
|
|
|
|
|
def load_hparams_from_tags_csv(tags_csv: str) -> Dict[str, Any]:
|
|
"""Load hparams from a file.
|
|
|
|
>>> hparams = Namespace(batch_size=32, learning_rate=0.001, data_root='./any/path/here')
|
|
>>> path_csv = os.path.join('.', 'testing-hparams.csv')
|
|
>>> save_hparams_to_tags_csv(path_csv, hparams)
|
|
>>> hparams_new = load_hparams_from_tags_csv(path_csv)
|
|
>>> vars(hparams) == hparams_new
|
|
True
|
|
>>> os.remove(path_csv)
|
|
"""
|
|
fs = get_filesystem(tags_csv)
|
|
if not fs.exists(tags_csv):
|
|
rank_zero_warn(f"Missing Tags: {tags_csv}.", category=RuntimeWarning)
|
|
return {}
|
|
|
|
with fs.open(tags_csv, "r", newline="") as fp:
|
|
csv_reader = csv.reader(fp, delimiter=",")
|
|
tags = {row[0]: convert(row[1]) for row in list(csv_reader)[1:]}
|
|
|
|
return tags
|
|
|
|
|
|
def save_hparams_to_tags_csv(tags_csv: str, hparams: Union[dict, Namespace]) -> None:
|
|
fs = get_filesystem(tags_csv)
|
|
if not fs.isdir(os.path.dirname(tags_csv)):
|
|
raise RuntimeError(f"Missing folder: {os.path.dirname(tags_csv)}.")
|
|
|
|
if isinstance(hparams, Namespace):
|
|
hparams = vars(hparams)
|
|
|
|
with fs.open(tags_csv, "w", newline="") as fp:
|
|
fieldnames = ["key", "value"]
|
|
writer = csv.DictWriter(fp, fieldnames=fieldnames)
|
|
writer.writerow({"key": "key", "value": "value"})
|
|
for k, v in hparams.items():
|
|
writer.writerow({"key": k, "value": v})
|
|
|
|
|
|
def load_hparams_from_yaml(config_yaml: str, use_omegaconf: bool = True) -> Dict[str, Any]:
|
|
"""Load hparams from a file.
|
|
|
|
Args:
|
|
config_yaml: Path to config yaml file
|
|
use_omegaconf: If omegaconf is available and ``use_omegaconf=True``,
|
|
the hparams will be converted to ``DictConfig`` if possible.
|
|
|
|
>>> hparams = Namespace(batch_size=32, learning_rate=0.001, data_root='./any/path/here')
|
|
>>> path_yaml = './testing-hparams.yaml'
|
|
>>> save_hparams_to_yaml(path_yaml, hparams)
|
|
>>> hparams_new = load_hparams_from_yaml(path_yaml)
|
|
>>> vars(hparams) == hparams_new
|
|
True
|
|
>>> os.remove(path_yaml)
|
|
"""
|
|
fs = get_filesystem(config_yaml)
|
|
if not fs.exists(config_yaml):
|
|
rank_zero_warn(f"Missing Tags: {config_yaml}.", category=RuntimeWarning)
|
|
return {}
|
|
|
|
with fs.open(config_yaml, "r") as fp:
|
|
hparams = yaml.full_load(fp)
|
|
|
|
if _OMEGACONF_AVAILABLE:
|
|
if use_omegaconf:
|
|
try:
|
|
return OmegaConf.create(hparams)
|
|
except (UnsupportedValueType, ValidationError):
|
|
pass
|
|
return hparams
|
|
|
|
|
|
def save_hparams_to_yaml(config_yaml, hparams: Union[dict, Namespace], use_omegaconf: bool = True) -> None:
|
|
"""
|
|
Args:
|
|
config_yaml: path to new YAML file
|
|
hparams: parameters to be saved
|
|
use_omegaconf: If omegaconf is available and ``use_omegaconf=True``,
|
|
the hparams will be converted to ``DictConfig`` if possible.
|
|
|
|
"""
|
|
fs = get_filesystem(config_yaml)
|
|
if not fs.isdir(os.path.dirname(config_yaml)):
|
|
raise RuntimeError(f"Missing folder: {os.path.dirname(config_yaml)}.")
|
|
|
|
# convert Namespace or AD to dict
|
|
if isinstance(hparams, Namespace):
|
|
hparams = vars(hparams)
|
|
elif isinstance(hparams, AttributeDict):
|
|
hparams = dict(hparams)
|
|
|
|
# saving with OmegaConf objects
|
|
if _OMEGACONF_AVAILABLE and use_omegaconf:
|
|
# deepcopy: hparams from user shouldn't be resolved
|
|
hparams = deepcopy(hparams)
|
|
hparams = apply_to_collection(hparams, DictConfig, OmegaConf.to_container, resolve=True)
|
|
with fs.open(config_yaml, "w", encoding="utf-8") as fp:
|
|
try:
|
|
OmegaConf.save(hparams, fp)
|
|
return
|
|
except (UnsupportedValueType, ValidationError):
|
|
pass
|
|
|
|
if not isinstance(hparams, dict):
|
|
raise TypeError("hparams must be dictionary")
|
|
|
|
hparams_allowed = {}
|
|
# drop parameters which contain some strange datatypes as fsspec
|
|
for k, v in hparams.items():
|
|
try:
|
|
v = v.name if isinstance(v, Enum) else v
|
|
yaml.dump(v)
|
|
except TypeError:
|
|
warn(f"Skipping '{k}' parameter because it is not possible to safely dump to YAML.")
|
|
hparams[k] = type(v).__name__
|
|
else:
|
|
hparams_allowed[k] = v
|
|
|
|
# saving the standard way
|
|
with fs.open(config_yaml, "w", newline="") as fp:
|
|
yaml.dump(hparams_allowed, fp)
|
|
|
|
|
|
def convert(val: str) -> Union[int, float, bool, str]:
|
|
try:
|
|
return ast.literal_eval(val)
|
|
except (ValueError, SyntaxError) as err:
|
|
log.debug(err)
|
|
return val
|