lightning/tests/overrides/test_data_parallel.py

155 lines
5.1 KiB
Python

from unittest.mock import MagicMock
import pytest
import torch
from torch.nn import DataParallel
from pytorch_lightning.overrides import LightningDistributedModule
from pytorch_lightning.overrides.base import warning_cache
from pytorch_lightning.overrides.data_parallel import (
LightningParallelModule,
python_scalar_to_tensor,
unsqueeze_scalar_tensor,
)
from pytorch_lightning.trainer.states import RunningStage
from tests.base import BoringModel
@pytest.mark.parametrize("wrapper_class", [
LightningParallelModule,
LightningDistributedModule,
])
def test_lightning_wrapper_module_methods(wrapper_class):
""" Test that the LightningWrapper redirects .forward() to the LightningModule methods. """
pl_module = MagicMock()
wrapped_module = wrapper_class(pl_module)
batch = torch.rand(5)
batch_idx = 3
pl_module.running_stage = RunningStage.TRAINING
wrapped_module(batch, batch_idx)
pl_module.training_step.assert_called_with(batch, batch_idx)
pl_module.running_stage = RunningStage.TESTING
wrapped_module(batch, batch_idx)
pl_module.test_step.assert_called_with(batch, batch_idx)
pl_module.running_stage = RunningStage.EVALUATING
wrapped_module(batch, batch_idx)
pl_module.validation_step.assert_called_with(batch, batch_idx)
pl_module.running_stage = None
wrapped_module(batch)
pl_module.predict.assert_called_with(batch)
@pytest.mark.parametrize("wrapper_class", [
LightningParallelModule,
LightningDistributedModule,
])
def test_lightning_wrapper_module_warn_none_output(wrapper_class):
""" Test that the LightningWrapper module warns about forgotten return statement. """
warning_cache.clear()
pl_module = MagicMock()
wrapped_module = wrapper_class(pl_module)
pl_module.training_step.return_value = None
pl_module.validation_step.return_value = None
pl_module.test_step.return_value = None
with pytest.warns(UserWarning, match="Your training_step returned None"):
pl_module.running_stage = RunningStage.TRAINING
wrapped_module()
with pytest.warns(UserWarning, match="Your test_step returned None"):
pl_module.running_stage = RunningStage.TESTING
wrapped_module()
with pytest.warns(UserWarning, match="Your validation_step returned None"):
pl_module.running_stage = RunningStage.EVALUATING
wrapped_module()
with pytest.warns(None) as record:
pl_module.running_stage = None
wrapped_module()
assert not record
@pytest.mark.parametrize("inp,expected", [
[torch.tensor(1.0), torch.tensor([1.0])],
[torch.tensor([2.0]), torch.tensor([2.0])],
[torch.ones(3, 4, 5), torch.ones(3, 4, 5)],
])
def test_unsqueeze_scalar_tensor(inp, expected):
""" Test that the utility function unsqueezes only scalar tensors. """
assert torch.all(unsqueeze_scalar_tensor(inp).eq(expected))
@pytest.mark.skipif(torch.cuda.device_count() < 2, reason="test requires multi-gpu machine")
def test_lightning_parallel_module_unsqueeze_scalar():
""" Test that LightningParallelModule takes care of un-squeezeing 0-dim tensors. """
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
output = super().training_step(batch, batch_idx)
loss = output["loss"]
loss = loss.squeeze()
assert loss.dim() == 0
# PyTorch usually warns about 0-dim tensors returned in DP
return {"loss": loss}
model = TestModel()
model.running_stage = RunningStage.TRAINING
batch = torch.rand(2, 32).cuda()
batch_idx = 0
wrapped_model = LightningParallelModule(model).cuda()
dp_module = DataParallel(wrapped_model, device_ids=[0, 1])
output = wrapped_model(batch, batch_idx)
assert output["loss"].dim() == 1
with pytest.warns(None) as record:
output = dp_module(batch, batch_idx)
assert output["loss"].dim() == 1
assert not record
@pytest.mark.parametrize("inp,expected", [
[1.0, torch.tensor([1.0])],
[2, torch.tensor([2.0])],
[True, torch.tensor([True])],
])
def test_python_scalar_to_tensor(inp, expected):
assert torch.all(python_scalar_to_tensor(inp).eq(expected))
@pytest.mark.parametrize("device", [
torch.device("cpu"),
torch.device("cuda", 0)
])
@pytest.mark.skipif(not torch.cuda.is_available(), reason="test requires GPU machine")
def test_lightning_parallel_module_python_scalar_conversion(device):
""" Test that LightningParallelModule can convert Python scalars to tensors. """
class TestModel(BoringModel):
def training_step(self, batch, batch_idx):
output = super().training_step(batch, batch_idx)
# PyTorch DP does not support Python scalars, Lightning converts them to tensors
output.update({"python scalar": 12.3})
return output
model = TestModel()
model.to(device)
model.running_stage = RunningStage.TRAINING
batch = torch.rand(2, 32).to(device)
batch_idx = 0
wrapped_model = LightningParallelModule(model)
output = wrapped_model(batch, batch_idx)
assert output["python scalar"] == torch.tensor([12.3], device=device)