Build and train PyTorch models and connect them to the ML lifecycle using Lightning App templates, without handling DIY infrastructure, cost management, scaling, and other headaches.
Go to file
William Falcon b2950296d5
fixed TPU docs (#5958)
2021-02-15 13:58:15 +00:00
.circleci remove executable bit on source files (#5929) 2021-02-12 00:06:40 +01:00
.github tests: Remove usage of --flake8 flag (#5909) 2021-02-12 12:25:08 -05:00
benchmarks move accelerator legacy tests (#5948) 2021-02-13 19:42:18 -05:00
dockers move accelerator legacy tests (#5948) 2021-02-13 19:42:18 -05:00
docs fixed TPU docs (#5958) 2021-02-15 13:58:15 +00:00
legacy define Yapf config (#5591) 2021-01-27 21:58:33 -05:00
notebooks Docs: move images (#5756) 2021-02-03 15:08:19 +00:00
pl_examples Refactor simplify tests (#5861) 2021-02-08 11:52:02 +01:00
pytorch_lightning Document exceptions in callbacks (#5541) 2021-02-15 10:24:36 +00:00
requirements tests: Remove usage of --flake8 flag (#5909) 2021-02-12 12:25:08 -05:00
tests remove legacy accelerators (#5949) 2021-02-14 16:03:45 +00:00
.codecov.yml skip files in coverage (#3944) 2020-10-07 12:37:01 -04:00
.gitignore PoC: Accelerator refactor (#5743) 2021-02-12 15:48:56 -05:00
.pep8speaks.yml unify pep8 speaks (#5607) 2021-02-04 20:55:41 +01:00
.pre-commit-config.yaml Add yapf to pre-commit (#5747) 2021-02-02 15:03:36 +01:00
.readthedocs.yml move base req. to root (#4219) 2020-10-18 20:40:18 +02:00
.yapfignore remove legacy accelerators (#5949) 2021-02-14 16:03:45 +00:00
CHANGELOG.md v1.2.0rc1 (#5946) 2021-02-13 12:58:25 +00:00
LICENSE update nightly & upgrade Twine (#5458) 2021-01-26 14:29:47 +01:00
MANIFEST.in Docs: move images (#5756) 2021-02-03 15:08:19 +00:00
Makefile tests: Remove usage of --flake8 flag (#5909) 2021-02-12 12:25:08 -05:00
README.md Update README.md 2021-02-13 14:44:19 -05:00
azure-pipelines.yml drop DDP CLI test (#5938) 2021-02-12 17:42:32 +01:00
environment.yml fixing some compatibility with PT 1.8 (#5864) 2021-02-09 18:25:57 +01:00
pyproject.toml Delete unused autopep8 config (#5904) 2021-02-11 14:32:14 +00:00
requirements.txt hotfix: drop bad pyyaml version (#5606) 2021-02-04 20:55:40 +01:00
setup.cfg formatting flake8 & isort (#5824) 2021-02-05 18:33:12 -05:00
setup.py define Yapf config (#5591) 2021-01-27 21:58:33 -05:00

README.md

The lightweight PyTorch wrapper for high-performance AI research. Scale your models, not the boilerplate.


WebsiteKey FeaturesHow To UseDocsExamplesCommunityGrid AILicence

PyPI - Python Version PyPI Status PyPI Status Conda DockerHub codecov

ReadTheDocs Slack Discourse status license

*Codecov is > 90%+ but build delays may show less

PyTorch Lightning is just organized PyTorch

Lightning disentangles PyTorch code to decouple the science from the engineering. PT to PL


Lightning Design Philosophy

Lightning structures PyTorch code with these principles:

Lightning forces the following structure to your code which makes it reusable and shareable:

  • Research code (the LightningModule).
  • Engineering code (you delete, and is handled by the Trainer).
  • Non-essential research code (logging, etc... this goes in Callbacks).
  • Data (use PyTorch Dataloaders or organize them into a LightningDataModule).

Once you do this, you can train on multiple-GPUs, TPUs, CPUs and even in 16-bit precision without changing your code!

Get started with our 2 step guide


Continuous Integration

Lightning is rigurously tested across multiple GPUs, TPUs CPUs and against major Python and PyTorch versions.

Current build statuses
System / PyTorch ver. 1.4 (min. req.)* 1.5 1.6 1.7 (latest) 1.8 (nightly)
Conda py3.7 [linux] PyTorch & Conda PyTorch & Conda PyTorch & Conda PyTorch & Conda PyTorch & Conda
Linux py3.7 [GPUs**] - - Build Status - -
Linux py3.{6,7} [TPUs***] - - TPU tests TPU tests
Linux py3.{6,7} CI complete testing - - CI complete testing -
OSX py3.{6,7,8} - CI complete testing - CI complete testing -
Windows py3.{6,7,8} CI complete testing - - CI complete testing -
  • ** tests run on two NVIDIA K80
  • *** tests run on Google GKE TPUv2/3
  • TPU w/ py3.6/py3.7 means we support Colab and Kaggle env.
Bleeding edge build status (1.2)

CI base testing CI complete testing PyTorch & Conda TPU tests Docs check


How To Use

Step 0: Install

Simple installation from PyPI

pip install pytorch-lightning
Other installation options

Install with optional dependencies (CPU)

pip install pytorch-lightning['cpu-extra']

Install with optional dependencies (GPU, TPU)

pip install pytorch-lightning['extra']

Conda

conda install pytorch-lightning -c conda-forge

Install bleeding-edge - future 1.2

Install future release from the source (no guarantees)

pip install git+https://github.com/PytorchLightning/pytorch-lightning.git@release/1.2-dev --upgrade

or nightly from testing PyPI

pip install -iU https://test.pypi.org/simple/ pytorch-lightning

Step 1: Add these imports

import os
import torch
from torch import nn
import torch.nn.functional as F
from torchvision.datasets import MNIST
from torch.utils.data import DataLoader, random_split
from torchvision import transforms
import pytorch_lightning as pl

Step 2: Define a LightningModule (nn.Module subclass)

A LightningModule defines a full system (ie: a GAN, autoencoder, BERT or a simple Image Classifier).

class LitAutoEncoder(pl.LightningModule):

    def __init__(self):
        super().__init__()
        self.encoder = nn.Sequential(nn.Linear(28 * 28, 128), nn.ReLU(), nn.Linear(128, 3))
        self.decoder = nn.Sequential(nn.Linear(3, 128), nn.ReLU(), nn.Linear(128, 28 * 28))

    def forward(self, x):
        # in lightning, forward defines the prediction/inference actions
        embedding = self.encoder(x)
        return embedding

    def training_step(self, batch, batch_idx):
        # training_step defined the train loop. It is independent of forward
        x, y = batch
        x = x.view(x.size(0), -1)
        z = self.encoder(x)
        x_hat = self.decoder(z)
        loss = F.mse_loss(x_hat, x)
        self.log('train_loss', loss)
        return loss

    def configure_optimizers(self):
        optimizer = torch.optim.Adam(self.parameters(), lr=1e-3)
        return optimizer

Note: Training_step defines the training loop. Forward defines how the LightningModule behaves during inference/prediction.

Step 3: Train!

dataset = MNIST(os.getcwd(), download=True, transform=transforms.ToTensor())
train, val = random_split(dataset, [55000, 5000])

autoencoder = LitAutoEncoder()
trainer = pl.Trainer()
trainer.fit(autoencoder, DataLoader(train), DataLoader(val))

Advanced features

Lightning has over 40+ advanced features designed for professional AI research at scale.

Here are some examples:

Highlighted feature code snippets
# 8 GPUs
# no code changes needed
trainer = Trainer(max_epochs=1, gpus=8)

# 256 GPUs
trainer = Trainer(max_epochs=1, gpus=8, num_nodes=32)
Train on TPUs without code changes
# no code changes needed
trainer = Trainer(tpu_cores=8)
16-bit precision
# no code changes needed
trainer = Trainer(precision=16)
Experiment managers
from pytorch_lightning import loggers

# tensorboard
trainer = Trainer(logger=TensorBoardLogger('logs/'))

# weights and biases
trainer = Trainer(logger=loggers.WandbLogger())

# comet
trainer = Trainer(logger=loggers.CometLogger())

# mlflow
trainer = Trainer(logger=loggers.MLFlowLogger())

# neptune
trainer = Trainer(logger=loggers.NeptuneLogger())

# ... and dozens more
EarlyStopping
es = EarlyStopping(monitor='val_loss')
trainer = Trainer(callbacks=[es])
Checkpointing
checkpointing = ModelCheckpoint(monitor='val_loss')
trainer = Trainer(callbacks=[checkpointing])
Export to torchscript (JIT) (production use)
# torchscript
autoencoder = LitAutoEncoder()
torch.jit.save(autoencoder.to_torchscript(), "model.pt")
Export to ONNX (production use)
# onnx
with tempfile.NamedTemporaryFile(suffix='.onnx', delete=False) as tmpfile:
    autoencoder = LitAutoEncoder()
    input_sample = torch.randn((1, 64))
    autoencoder.to_onnx(tmpfile.name, input_sample, export_params=True)
    os.path.isfile(tmpfile.name)

Pro-level control of training loops (advanced users)

For complex/professional level work, you have optional full control of the training loop and optimizers.

class LitAutoEncoder(pl.LightningModule):
    def training_step(self, batch, batch_idx, optimizer_idx):
        # access your optimizers with use_pl_optimizer=False. Default is True
        (opt_a, opt_b) = self.optimizers(use_pl_optimizer=True)

        loss_a = ...
        self.manual_backward(loss_a, opt_a)
        opt_a.step()
        opt_a.zero_grad()

        loss_b = ...
        self.manual_backward(loss_b, opt_b, retain_graph=True)
        self.manual_backward(loss_b, opt_b)
        opt_b.step()
        opt_b.zero_grad()

Advantages over unstructured PyTorch

  • Models become hardware agnostic
  • Code is clear to read because engineering code is abstracted away
  • Easier to reproduce
  • Make fewer mistakes because lightning handles the tricky engineering
  • Keeps all the flexibility (LightningModules are still PyTorch modules), but removes a ton of boilerplate
  • Lightning has dozens of integrations with popular machine learning tools.
  • Tested rigorously with every new PR. We test every combination of PyTorch and Python supported versions, every OS, multi GPUs and even TPUs.
  • Minimal running speed overhead (about 300 ms per epoch compared with pure PyTorch).

Examples

Hello world
Contrastive Learning
NLP
Reinforcement Learning
Vision
Classic ML

Community

The lightning community is maintained by

  • 16 core contributors who are all a mix of professional engineers, Research Scientists, Ph.D. students from top AI labs.
  • 280+ community contributors.

Lightning is also part of the PyTorch ecosystem which requires projects to have solid testing, documentation and support.

Asking for help

If you have any questions please:

  1. Read the docs.
  2. Search through the Discussions.
  3. Look it up in our forum (or add a new question)
  4. Join our slack.

Funding

We're venture funded to make sure we can provide around the clock support, hire a full-time staff, attend conferences, and move faster through implementing features you request.


Grid AI

Grid AI is our native platform for training models at scale on the cloud!

Sign up for early access here

To use grid, take your regular command:

    python my_model.py --learning_rate 1e-6 --layers 2 --gpus 4

And change it to use the grid train command:

    grid train --grid_gpus 4 my_model.py --learning_rate 'uniform(1e-6, 1e-1, 20)' --layers '[2, 4, 8, 16]'

The above command will launch (20 * 4) experiments each running on 4 GPUs (320 GPUs!) - by making ZERO changes to your code.


Licence

Please observe the Apache 2.0 license that is listed in this repository. In addition the Lightning framework is Patent Pending.

BibTeX

If you want to cite the framework feel free to use this (but only if you loved it 😊):

@article{falcon2019pytorch,
  title={PyTorch Lightning},
  author={Falcon, WA},
  journal={GitHub. Note: https://github.com/PyTorchLightning/pytorch-lightning},
  volume={3},
  year={2019}
}