468 lines
15 KiB
Python
468 lines
15 KiB
Python
"""
|
|
Lightning can automate saving and loading checkpoints
|
|
=====================================================
|
|
|
|
Checkpointing is enabled by default to the current working directory.
|
|
To change the checkpoint path pass in::
|
|
|
|
Trainer(default_save_path='/your/path/to/save/checkpoints')
|
|
|
|
|
|
To modify the behavior of checkpointing pass in your own callback.
|
|
|
|
.. code-block:: python
|
|
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
|
|
# DEFAULTS used by the Trainer
|
|
checkpoint_callback = ModelCheckpoint(
|
|
filepath=os.getcwd(),
|
|
save_top_k=1,
|
|
verbose=True,
|
|
monitor='val_loss',
|
|
mode='min',
|
|
prefix=''
|
|
)
|
|
|
|
trainer = Trainer(checkpoint_callback=checkpoint_callback)
|
|
|
|
|
|
Restoring training session
|
|
--------------------------
|
|
|
|
You might want to not only load a model but also continue training it. Use this method to
|
|
restore the trainer state as well. This will continue from the epoch and global step you last left off.
|
|
However, the dataloaders will start from the first batch again (if you shuffled it shouldn't matter).
|
|
|
|
Lightning will restore the session if you pass a logger with the same version and there's a saved checkpoint.
|
|
|
|
.. code-block:: python
|
|
|
|
from pytorch_lightning import Trainer
|
|
|
|
trainer = Trainer(
|
|
resume_from_checkpoint=PATH
|
|
)
|
|
|
|
# this fit call loads model weights and trainer state
|
|
# the trainer continues seamlessly from where you left off
|
|
# without having to do anything else.
|
|
trainer.fit(model)
|
|
|
|
|
|
The trainer restores:
|
|
|
|
- global_step
|
|
- current_epoch
|
|
- All optimizers
|
|
- All lr_schedulers
|
|
- Model weights
|
|
|
|
You can even change the logic of your model as long as the weights and "architecture" of
|
|
the system isn't different. If you add a layer, for instance, it might not work.
|
|
|
|
At a rough level, here's what happens inside Trainer :py:mod:`pytorch_lightning.base_module.model_saving.py`:
|
|
|
|
.. code-block:: python
|
|
|
|
self.global_step = checkpoint['global_step']
|
|
self.current_epoch = checkpoint['epoch']
|
|
|
|
# restore the optimizers
|
|
optimizer_states = checkpoint['optimizer_states']
|
|
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
|
|
optimizer.load_state_dict(opt_state)
|
|
|
|
# restore the lr schedulers
|
|
lr_schedulers = checkpoint['lr_schedulers']
|
|
for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers):
|
|
scheduler['scheduler'].load_state_dict(lrs_state)
|
|
|
|
# uses the model you passed into trainer
|
|
model.load_state_dict(checkpoint['state_dict'])
|
|
|
|
"""
|
|
|
|
import os
|
|
import re
|
|
import signal
|
|
from abc import ABC
|
|
from argparse import Namespace
|
|
from subprocess import call
|
|
from typing import Union
|
|
|
|
import torch
|
|
import torch.distributed as torch_distrib
|
|
|
|
from pytorch_lightning import _logger as log
|
|
from pytorch_lightning.core.lightning import LightningModule
|
|
from pytorch_lightning.loggers import LightningLoggerBase
|
|
from pytorch_lightning.overrides.data_parallel import (
|
|
LightningDistributedDataParallel,
|
|
LightningDataParallel,
|
|
)
|
|
from pytorch_lightning.utilities import rank_zero_warn
|
|
|
|
try:
|
|
import torch_xla
|
|
import torch_xla.core.xla_model as xm
|
|
import torch_xla.distributed.xla_multiprocessing as xmp
|
|
except ImportError:
|
|
XLA_AVAILABLE = False
|
|
else:
|
|
XLA_AVAILABLE = True
|
|
|
|
|
|
class TrainerIOMixin(ABC):
|
|
|
|
# this is just a summary on variables used in this abstract class,
|
|
# the proper values/initialisation should be done in child class
|
|
model: LightningModule
|
|
on_gpu: bool
|
|
root_gpu: ...
|
|
resume_from_checkpoint: ...
|
|
use_ddp: bool
|
|
use_ddp2: bool
|
|
checkpoint_callback: ...
|
|
proc_rank: int
|
|
weights_save_path: str
|
|
logger: Union[LightningLoggerBase, bool]
|
|
early_stop_callback: ...
|
|
lr_schedulers: ...
|
|
optimizers: ...
|
|
on_tpu: bool
|
|
num_training_batches: int
|
|
accumulate_grad_batches: int
|
|
|
|
def get_model(self):
|
|
is_dp_module = isinstance(self.model, (LightningDistributedDataParallel,
|
|
LightningDataParallel))
|
|
model = self.model.module if is_dp_module else self.model
|
|
return model
|
|
|
|
# --------------------
|
|
# CHECK-POINTING
|
|
# --------------------
|
|
def restore_weights(self, model: LightningModule):
|
|
"""
|
|
We attempt to restore weights in this order:
|
|
1. HPC weights.
|
|
2. if no HPC weights restore checkpoint_path weights
|
|
3. otherwise don't restore weights
|
|
"""
|
|
# clear cache before restore
|
|
if self.on_gpu:
|
|
torch.cuda.empty_cache()
|
|
|
|
# if script called from hpc resubmit, load weights
|
|
did_restore_hpc_weights = self.restore_hpc_weights_if_needed(model)
|
|
|
|
# clear cache after restore
|
|
if self.on_gpu:
|
|
torch.cuda.empty_cache()
|
|
|
|
if not did_restore_hpc_weights:
|
|
if self.resume_from_checkpoint is not None:
|
|
self.restore(self.resume_from_checkpoint, on_gpu=self.on_gpu)
|
|
|
|
# wait for all models to restore weights
|
|
if self.use_ddp or self.use_ddp2:
|
|
# wait for all processes to catch up
|
|
torch_distrib.barrier()
|
|
|
|
# wait for all models to restore weights
|
|
if self.on_tpu and XLA_AVAILABLE:
|
|
# wait for all processes to catch up
|
|
torch_xla.core.xla_model.rendezvous("pl.TrainerIOMixin.restore_weights")
|
|
|
|
# clear cache after restore
|
|
if self.on_gpu:
|
|
torch.cuda.empty_cache()
|
|
|
|
# --------------------
|
|
# HPC SIGNAL HANDLING
|
|
# --------------------
|
|
def register_slurm_signal_handlers(self):
|
|
# see if we're using slurm (not interactive)
|
|
on_slurm = False
|
|
try:
|
|
job_name = os.environ['SLURM_JOB_NAME']
|
|
if job_name != 'bash':
|
|
on_slurm = True
|
|
except Exception as e:
|
|
pass
|
|
|
|
if on_slurm:
|
|
log.info('Set SLURM handle signals.')
|
|
signal.signal(signal.SIGUSR1, self.sig_handler)
|
|
signal.signal(signal.SIGTERM, self.term_handler)
|
|
|
|
def sig_handler(self, signum, frame): # pragma: no-cover
|
|
if self.proc_rank == 0:
|
|
# save weights
|
|
log.info('handling SIGUSR1')
|
|
self.hpc_save(self.weights_save_path, self.logger)
|
|
|
|
# find job id
|
|
job_id = os.environ['SLURM_JOB_ID']
|
|
cmd = 'scontrol requeue {}'.format(job_id)
|
|
|
|
# requeue job
|
|
log.info(f'requeing job {job_id}...')
|
|
result = call(cmd, shell=True)
|
|
|
|
# print result text
|
|
if result == 0:
|
|
log.info(f'requeued exp {job_id}')
|
|
else:
|
|
log.info('requeue failed...')
|
|
|
|
# close experiment to avoid issues
|
|
self.logger.close()
|
|
|
|
def term_handler(self, signum, frame):
|
|
# save
|
|
log.info("bypassing sigterm")
|
|
|
|
# --------------------
|
|
# MODEL SAVE CHECKPOINT
|
|
# --------------------
|
|
def _atomic_save(self, checkpoint, filepath: str):
|
|
"""Saves a checkpoint atomically, avoiding the creation of incomplete checkpoints.
|
|
|
|
This will create a temporary checkpoint with a suffix of ``.part``, then copy it to the final location once
|
|
saving is finished.
|
|
|
|
Args:
|
|
checkpoint: The object to save.
|
|
Built to be used with the ``dump_checkpoint`` method, but can deal with anything which ``torch.save``
|
|
accepts.
|
|
filepath: The path to which the checkpoint will be saved.
|
|
This points to the file that the checkpoint will be stored in.
|
|
"""
|
|
tmp_path = str(filepath) + ".part"
|
|
torch.save(checkpoint, tmp_path)
|
|
os.replace(tmp_path, filepath)
|
|
|
|
def save_checkpoint(self, filepath):
|
|
checkpoint = self.dump_checkpoint()
|
|
|
|
if self.proc_rank == 0:
|
|
# do the actual save
|
|
try:
|
|
self._atomic_save(checkpoint, filepath)
|
|
except AttributeError:
|
|
if 'hparams' in checkpoint:
|
|
del checkpoint['hparams']
|
|
|
|
self._atomic_save(checkpoint, filepath)
|
|
|
|
def restore(self, checkpoint_path: str, on_gpu: bool):
|
|
"""
|
|
Restore training state from checkpoint.
|
|
Also restores all training state like:
|
|
- epoch
|
|
- callbacks
|
|
- schedulers
|
|
- optimizer
|
|
"""
|
|
|
|
# if on_gpu:
|
|
# checkpoint = torch.load(checkpoint_path)
|
|
# else:
|
|
# load on CPU first
|
|
checkpoint = torch.load(checkpoint_path, map_location=lambda storage, loc: storage)
|
|
|
|
# load model state
|
|
model = self.get_model()
|
|
|
|
# load the state_dict on the model automatically
|
|
model.load_state_dict(checkpoint['state_dict'])
|
|
if on_gpu:
|
|
model.cuda(self.root_gpu)
|
|
|
|
# load training state (affects trainer only)
|
|
self.restore_training_state(checkpoint)
|
|
|
|
def dump_checkpoint(self):
|
|
checkpoint = {
|
|
'epoch': self.current_epoch + 1,
|
|
'global_step': self.global_step + 1,
|
|
}
|
|
|
|
if self.checkpoint_callback is not None and self.checkpoint_callback is not False:
|
|
checkpoint['checkpoint_callback_best'] = self.checkpoint_callback.best
|
|
|
|
if self.early_stop_callback is not None and self.checkpoint_callback is not False:
|
|
checkpoint['early_stop_callback_wait'] = self.early_stop_callback.wait
|
|
checkpoint['early_stop_callback_patience'] = self.early_stop_callback.patience
|
|
|
|
# save optimizers
|
|
optimizer_states = []
|
|
for i, optimizer in enumerate(self.optimizers):
|
|
optimizer_states.append(optimizer.state_dict())
|
|
|
|
checkpoint['optimizer_states'] = optimizer_states
|
|
|
|
# save lr schedulers
|
|
lr_schedulers = []
|
|
for scheduler in self.lr_schedulers:
|
|
lr_schedulers.append(scheduler['scheduler'].state_dict())
|
|
|
|
checkpoint['lr_schedulers'] = lr_schedulers
|
|
|
|
# add the hparams and state_dict from the model
|
|
model = self.get_model()
|
|
|
|
checkpoint['state_dict'] = model.state_dict()
|
|
|
|
if hasattr(model, "hparams"):
|
|
is_namespace = isinstance(model.hparams, Namespace)
|
|
checkpoint['hparams'] = vars(model.hparams) if is_namespace else model.hparams
|
|
checkpoint['hparams_type'] = 'namespace' if is_namespace else 'dict'
|
|
else:
|
|
rank_zero_warn(
|
|
"Did not find hyperparameters at model hparams. Saving checkpoint without hyperparameters."
|
|
)
|
|
|
|
# give the model a chance to add a few things
|
|
model.on_save_checkpoint(checkpoint)
|
|
|
|
return checkpoint
|
|
|
|
# --------------------
|
|
# HPC IO
|
|
# --------------------
|
|
def restore_hpc_weights_if_needed(self, model: LightningModule):
|
|
"""If there is a set of hpc weights, use as signal to restore model."""
|
|
did_restore = False
|
|
|
|
# look for hpc weights
|
|
folderpath = self.weights_save_path
|
|
if os.path.exists(folderpath):
|
|
files = os.listdir(folderpath)
|
|
hpc_weight_paths = [x for x in files if 'hpc_ckpt' in x]
|
|
|
|
# if hpc weights exist restore model
|
|
if len(hpc_weight_paths) > 0:
|
|
self.hpc_load(folderpath, self.on_gpu)
|
|
did_restore = True
|
|
return did_restore
|
|
|
|
def restore_training_state(self, checkpoint):
|
|
"""
|
|
Restore trainer state.
|
|
Model will get its change to update
|
|
:param checkpoint:
|
|
:return:
|
|
"""
|
|
if self.checkpoint_callback is not None and self.checkpoint_callback is not False:
|
|
self.checkpoint_callback.best = checkpoint['checkpoint_callback_best']
|
|
|
|
if self.early_stop_callback is not None and self.early_stop_callback is not False:
|
|
self.early_stop_callback.wait = checkpoint['early_stop_callback_wait']
|
|
self.early_stop_callback.patience = checkpoint['early_stop_callback_patience']
|
|
|
|
self.global_step = checkpoint['global_step']
|
|
self.current_epoch = checkpoint['epoch']
|
|
|
|
# Division deals with global step stepping once per accumulated batch
|
|
# Inequality deals with different global step for odd vs even num_training_batches
|
|
n_accum = 1 if self.accumulate_grad_batches is None else self.accumulate_grad_batches
|
|
expected_steps = self.num_training_batches / n_accum
|
|
if self.num_training_batches != 0 and self.global_step % expected_steps > 1:
|
|
rank_zero_warn(
|
|
"You're resuming from a checkpoint that ended mid-epoch. "
|
|
"This can cause unreliable results if further training is done, "
|
|
"consider using an end of epoch checkpoint. "
|
|
)
|
|
|
|
# restore the optimizers
|
|
optimizer_states = checkpoint['optimizer_states']
|
|
for optimizer, opt_state in zip(self.optimizers, optimizer_states):
|
|
optimizer.load_state_dict(opt_state)
|
|
|
|
# move optimizer to GPU 1 weight at a time
|
|
# avoids OOM
|
|
if self.root_gpu is not None:
|
|
for state in optimizer.state.values():
|
|
for k, v in state.items():
|
|
if isinstance(v, torch.Tensor):
|
|
state[k] = v.cuda(self.root_gpu)
|
|
|
|
# restore the lr schedulers
|
|
lr_schedulers = checkpoint['lr_schedulers']
|
|
for scheduler, lrs_state in zip(self.lr_schedulers, lr_schedulers):
|
|
scheduler['scheduler'].load_state_dict(lrs_state)
|
|
|
|
# ----------------------------------
|
|
# PRIVATE OPS
|
|
# ----------------------------------
|
|
def hpc_save(self, folderpath: str, logger):
|
|
# make sure the checkpoint folder exists
|
|
os.makedirs(folderpath, exist_ok=True)
|
|
|
|
# save logger to make sure we get all the metrics
|
|
logger.save()
|
|
|
|
ckpt_number = self.max_ckpt_in_folder(folderpath) + 1
|
|
|
|
if not os.path.exists(folderpath):
|
|
os.makedirs(folderpath, exist_ok=True)
|
|
filepath = os.path.join(folderpath, f'hpc_ckpt_{ckpt_number}.ckpt')
|
|
|
|
# give model a chance to do something on hpc_save
|
|
model = self.get_model()
|
|
checkpoint = self.dump_checkpoint()
|
|
|
|
model.on_hpc_save(checkpoint)
|
|
|
|
# do the actual save
|
|
# TODO: fix for anything with multiprocess DP, DDP, DDP2
|
|
try:
|
|
self._atomic_save(checkpoint, filepath)
|
|
except AttributeError:
|
|
if 'hparams' in checkpoint:
|
|
del checkpoint['hparams']
|
|
|
|
self._atomic_save(checkpoint, filepath)
|
|
|
|
return filepath
|
|
|
|
def hpc_load(self, folderpath, on_gpu):
|
|
filepath = '{}/hpc_ckpt_{}.ckpt'.format(folderpath, self.max_ckpt_in_folder(folderpath))
|
|
|
|
# load on CPU first
|
|
checkpoint = torch.load(filepath, map_location=lambda storage, loc: storage)
|
|
|
|
# load model state
|
|
model = self.get_model()
|
|
|
|
# load the state_dict on the model automatically
|
|
model.load_state_dict(checkpoint['state_dict'])
|
|
|
|
if self.root_gpu is not None:
|
|
model.cuda(self.root_gpu)
|
|
|
|
# load training state (affects trainer only)
|
|
self.restore_training_state(checkpoint)
|
|
|
|
# call model hook
|
|
model.on_hpc_load(checkpoint)
|
|
|
|
log.info(f'restored hpc model from: {filepath}')
|
|
|
|
def max_ckpt_in_folder(self, path, name_key='ckpt_'):
|
|
files = os.listdir(path)
|
|
files = [x for x in files if name_key in x]
|
|
if len(files) == 0:
|
|
return 0
|
|
|
|
ckpt_vs = []
|
|
for name in files:
|
|
name = name.split(name_key)[-1]
|
|
name = re.sub('[^0-9]', '', name)
|
|
ckpt_vs.append(int(name))
|
|
|
|
return max(ckpt_vs)
|