lightning/pytorch_lightning/utilities/__init__.py

130 lines
4.2 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""General utilities"""
import importlib
import platform
from distutils.version import LooseVersion
from enum import Enum
from typing import Union
import numpy
import torch
from pytorch_lightning.utilities.apply_func import move_data_to_device
from pytorch_lightning.utilities.distributed import AllGatherGrad, rank_zero_info, rank_zero_only, rank_zero_warn
from pytorch_lightning.utilities.parsing import AttributeDict, flatten_dict, is_picklable
from pytorch_lightning.utilities.xla_device_utils import XLA_AVAILABLE, XLADeviceUtils
def _module_available(module_path: str) -> bool:
"""Testing if given module is avalaible in your env
>>> _module_available('os')
True
>>> _module_available('bla.bla')
False
"""
# todo: find a better way than try / except
try:
mods = module_path.split('.')
assert mods, 'nothing given to test'
# it has to be tested as per partets
for i in range(len(mods)):
module_path = '.'.join(mods[:i + 1])
if importlib.util.find_spec(module_path) is None:
return False
return True
except AttributeError:
return False
APEX_AVAILABLE = _module_available("apex.amp")
NATIVE_AMP_AVAILABLE = _module_available("torch.cuda.amp") and hasattr(torch.cuda.amp, "autocast")
OMEGACONF_AVAILABLE = _module_available("omegaconf")
HYDRA_AVAILABLE = _module_available("hydra")
HOROVOD_AVAILABLE = _module_available("horovod.torch")
BOLTS_AVAILABLE = _module_available("pl_bolts")
TPU_AVAILABLE = XLADeviceUtils.tpu_device_exists()
FAIRSCALE_AVAILABLE = platform.system() != 'Windows' and _module_available('fairscale.nn.data_parallel')
RPC_AVAILABLE = platform.system() != 'Windows' and _module_available('torch.distributed.rpc')
GROUP_AVAILABLE = platform.system() != 'Windows' and _module_available('torch.distributed.group')
FAIRSCALE_PIPE_AVAILABLE = FAIRSCALE_AVAILABLE and LooseVersion(torch.__version__) == LooseVersion("1.6.0")
BOLTS_AVAILABLE = _module_available('pl_bolts')
FLOAT16_EPSILON = numpy.finfo(numpy.float16).eps
FLOAT32_EPSILON = numpy.finfo(numpy.float32).eps
FLOAT64_EPSILON = numpy.finfo(numpy.float64).eps
class LightningEnum(str, Enum):
""" Type of any enumerator with allowed comparison to string invariant to cases. """
@classmethod
def from_str(cls, value: str) -> 'LightningEnum':
statuses = [status for status in dir(cls) if not status.startswith('_')]
for st in statuses:
if st.lower() == value.lower():
return getattr(cls, st)
return None
def __eq__(self, other: Union[str, Enum]) -> bool:
other = other.value if isinstance(other, Enum) else str(other)
return self.value.lower() == other.lower()
class AMPType(LightningEnum):
"""Type of Automatic Mixed Precission used for training.
>>> # you can math the type with string
>>> AMPType.APEX == 'apex'
True
"""
APEX = 'apex'
NATIVE = 'native'
class DistributedType(LightningEnum):
""" Define type of ditributed computing.
>>> # you can math the type with string
>>> DistributedType.DDP == 'ddp'
True
>>> # which is case invariant
>>> DistributedType.DDP2 == 'DDP2'
True
"""
DP = 'dp'
DDP = 'ddp'
DDP2 = 'ddp2'
DDP_SPAWN = 'ddp_spawn'
HOROVOD = 'horovod'
class DeviceType(LightningEnum):
""" Define Device type byt its nature - acceleatrors.
>>> DeviceType.CPU == DeviceType.from_str('cpu')
True
>>> # you can math the type with string
>>> DeviceType.GPU == 'GPU'
True
>>> # which is case invariant
>>> DeviceType.TPU == 'tpu'
True
"""
CPU = 'CPU'
GPU = 'GPU'
TPU = 'TPU'