lightning/pytorch_lightning/accelerators/gpu.py

65 lines
2.6 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import logging
import os
from typing import Any, Dict, Union
import torch
import pytorch_lightning as pl
from pytorch_lightning.accelerators.accelerator import Accelerator
from pytorch_lightning.plugins import DataParallelPlugin
from pytorch_lightning.utilities.exceptions import MisconfigurationException
_log = logging.getLogger(__name__)
class GPUAccelerator(Accelerator):
""" Accelerator for GPU devices. """
def setup(self, trainer: 'pl.Trainer', model: 'pl.LightningModule') -> None:
"""
Raises:
MisconfigurationException:
If the selected device is not GPU.
"""
if "cuda" not in str(self.root_device):
raise MisconfigurationException(f"Device should be GPU, got {self.root_device} instead")
self.set_nvidia_flags(trainer.local_rank)
torch.cuda.set_device(self.root_device)
return super().setup(trainer, model)
def on_train_start(self) -> None:
# clear cache before training
# use context because of:
# https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
with torch.cuda.device(self.root_device):
torch.cuda.empty_cache()
@staticmethod
def set_nvidia_flags(local_rank: int) -> None:
# set the correct cuda visible devices (using pci order)
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
all_gpu_ids = ",".join([str(x) for x in range(torch.cuda.device_count())])
devices = os.getenv("CUDA_VISIBLE_DEVICES", all_gpu_ids)
_log.info(f"LOCAL_RANK: {local_rank} - CUDA_VISIBLE_DEVICES: [{devices}]")
def to_device(self, step_kwargs: Dict[str, Union[Any, int]]) -> Dict[str, Union[Any, int]]:
# no need to transfer batch to device in DP mode
# TODO: Add support to allow batch transfer to device in Lightning for DP mode.
if not isinstance(self.training_type_plugin, DataParallelPlugin):
step_kwargs = super().to_device(step_kwargs)
return step_kwargs