550 lines
22 KiB
Python
550 lines
22 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import contextlib
|
|
from collections import defaultdict
|
|
from typing import Any, Callable, DefaultDict, Dict, Generator, Iterable, List, Optional, Union
|
|
|
|
import torch
|
|
from torch import Tensor
|
|
from torch.nn import Module
|
|
from torch.optim import Optimizer
|
|
from torch.utils.data import DataLoader
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning.plugins.precision import ApexMixedPrecisionPlugin, NativeMixedPrecisionPlugin, PrecisionPlugin
|
|
from pytorch_lightning.plugins.training_type import TrainingTypePlugin
|
|
from pytorch_lightning.trainer.states import TrainerFn
|
|
from pytorch_lightning.utilities import _NATIVE_AMP_AVAILABLE, rank_zero_warn
|
|
from pytorch_lightning.utilities.apply_func import apply_to_collection, move_data_to_device
|
|
from pytorch_lightning.utilities.enums import AMPType, GradClipAlgorithmType, LightningEnum
|
|
from pytorch_lightning.utilities.types import STEP_OUTPUT
|
|
|
|
if _NATIVE_AMP_AVAILABLE:
|
|
from torch.cuda.amp import GradScaler
|
|
|
|
|
|
class Accelerator:
|
|
"""
|
|
The Accelerator Base Class.
|
|
An Accelerator is meant to deal with one type of Hardware.
|
|
|
|
Currently there are accelerators for:
|
|
|
|
- CPU
|
|
- GPU
|
|
- TPU
|
|
|
|
Each Accelerator gets two plugins upon initialization:
|
|
One to handle differences from the training routine and one to handle different precisions.
|
|
|
|
"""
|
|
|
|
def __init__(
|
|
self,
|
|
precision_plugin: PrecisionPlugin,
|
|
training_type_plugin: TrainingTypePlugin,
|
|
) -> None:
|
|
"""
|
|
Args:
|
|
precision_plugin: the plugin to handle precision-specific parts
|
|
training_type_plugin: the plugin to handle different training routines
|
|
"""
|
|
self.precision_plugin = precision_plugin
|
|
self.training_type_plugin = training_type_plugin
|
|
|
|
self.optimizers: List = []
|
|
self.lr_schedulers: List = []
|
|
self.optimizer_frequencies: List = []
|
|
|
|
def connect(self, model: 'pl.LightningModule') -> None:
|
|
"""Transfers ownership of the model to this plugin"""
|
|
self.training_type_plugin.connect(model)
|
|
|
|
def setup_environment(self) -> None:
|
|
"""
|
|
Setup any processes or distributed connections.
|
|
This is called before the LightningModule/DataModule setup hook
|
|
which allows the user to access the accelerator environment before setup is complete.
|
|
"""
|
|
self.training_type_plugin.setup_environment()
|
|
|
|
def setup(self, trainer: 'pl.Trainer', model: 'pl.LightningModule') -> None:
|
|
"""
|
|
Setup plugins for the trainer fit and creates optimizers.
|
|
|
|
Args:
|
|
trainer: the trainer instance
|
|
model: the LightningModule
|
|
"""
|
|
self.setup_training_type_plugin(model)
|
|
if not self.training_type_plugin.setup_optimizers_in_pre_dispatch:
|
|
self.setup_optimizers(trainer)
|
|
self.setup_precision_plugin()
|
|
|
|
def start_training(self, trainer: 'pl.Trainer') -> None:
|
|
self.training_type_plugin.start_training(trainer)
|
|
|
|
def start_evaluating(self, trainer: 'pl.Trainer') -> None:
|
|
self.training_type_plugin.start_evaluating(trainer)
|
|
|
|
def start_predicting(self, trainer: 'pl.Trainer') -> None:
|
|
self.training_type_plugin.start_predicting(trainer)
|
|
|
|
def pre_dispatch(self, trainer: 'pl.Trainer') -> None:
|
|
"""Hook to do something before the training/evaluation/prediction starts."""
|
|
self._move_optimizer_state()
|
|
|
|
self.training_type_plugin.pre_dispatch()
|
|
if self.training_type_plugin.setup_optimizers_in_pre_dispatch:
|
|
self.setup_optimizers(trainer)
|
|
|
|
self.precision_plugin.pre_dispatch()
|
|
|
|
def _move_optimizer_state(self) -> None:
|
|
""" Moves the state of the optimizers to the GPU if needed. """
|
|
for opt in self.optimizers:
|
|
state: DefaultDict = defaultdict(dict)
|
|
for p, v in opt.state.items():
|
|
state[p] = apply_to_collection(v, torch.Tensor, move_data_to_device, self.root_device)
|
|
opt.state = state
|
|
|
|
def dispatch(self, trainer: 'pl.Trainer') -> None:
|
|
"""Hook to do something before the training/evaluation/prediction starts."""
|
|
self.training_type_plugin.dispatch(trainer)
|
|
self.precision_plugin.dispatch(trainer)
|
|
|
|
def post_dispatch(self, trainer: 'pl.Trainer') -> None:
|
|
"""Hook to do something after the training/evaluation/prediction starts."""
|
|
self.training_type_plugin.post_dispatch()
|
|
self.precision_plugin.post_dispatch()
|
|
|
|
@property
|
|
def model(self) -> Module:
|
|
"""
|
|
Returns the model. This can also be a wrapped LightningModule.
|
|
For retrieving the pure LightningModule use :attr:`Accelerator.lightning_module`
|
|
"""
|
|
return self.training_type_plugin.model
|
|
|
|
@model.setter
|
|
def model(self, new_model: Module) -> None:
|
|
self.training_type_plugin.model = new_model
|
|
|
|
@property
|
|
def lightning_module(self) -> 'pl.LightningModule':
|
|
"""
|
|
Returns the pure LightningModule.
|
|
To get the potentially wrapped model use :attr:`Accelerator.model`
|
|
"""
|
|
return self.training_type_plugin.lightning_module
|
|
|
|
@property
|
|
def root_device(self) -> torch.device:
|
|
"""Returns the root device"""
|
|
return self.training_type_plugin.root_device
|
|
|
|
def teardown(self) -> None:
|
|
"""
|
|
This method is called to teardown the training process.
|
|
It is the right place to release memory and free other resources.
|
|
"""
|
|
self.training_type_plugin.teardown()
|
|
|
|
def batch_to_device(
|
|
self, batch: Any, device: Optional[torch.device] = None, dataloader_idx: Optional[int] = None
|
|
) -> Any:
|
|
"""Moves the batch to the correct device.
|
|
The returned batch is of the same type as the input batch, just having all tensors on the correct device.
|
|
|
|
Args:
|
|
batch: The batch of samples to move to the correct device
|
|
device: The target device
|
|
dataloader_idx: The index of the dataloader to which the batch belongs.
|
|
"""
|
|
model = self.lightning_module
|
|
|
|
if model is not None:
|
|
return model._apply_batch_transfer_handler(batch, device, dataloader_idx)
|
|
|
|
return move_data_to_device(batch, device)
|
|
|
|
def on_train_start(self) -> None:
|
|
"""Hook to do something upon the training start"""
|
|
pass
|
|
|
|
def training_step(
|
|
self,
|
|
step_kwargs: Dict[str, Union[Any, int]],
|
|
) -> STEP_OUTPUT:
|
|
"""The actual training step.
|
|
|
|
Args:
|
|
step_kwargs: the arguments for the models training step. Can consist of the following:
|
|
|
|
- batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]):
|
|
The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list.
|
|
- batch_idx (int): Integer displaying index of this batch
|
|
- optimizer_idx (int): When using multiple optimizers, this argument will also be present.
|
|
- hiddens(:class:`~torch.Tensor`): Passed in if
|
|
:paramref:`~pytorch_lightning.core.lightning.LightningModule.truncated_bptt_steps` > 0.
|
|
"""
|
|
step_kwargs = self.to_device(step_kwargs)
|
|
|
|
with self.precision_plugin.train_step_context(), self.training_type_plugin.train_step_context():
|
|
return self.training_type_plugin.training_step(*step_kwargs.values())
|
|
|
|
def post_training_step(self) -> None:
|
|
self.training_type_plugin.post_training_step()
|
|
|
|
def validation_step(self, step_kwargs: Dict[str, Union[Any, int]]) -> Optional[STEP_OUTPUT]:
|
|
"""The actual validation step.
|
|
|
|
Args:
|
|
step_kwargs: the arguments for the models validation step. Can consist of the following:
|
|
|
|
- batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]):
|
|
The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list.
|
|
- batch_idx (int): The index of this batch
|
|
- dataloader_idx (int): The index of the dataloader that produced this batch
|
|
(only if multiple val dataloaders used)
|
|
"""
|
|
step_kwargs = self.to_device(step_kwargs)
|
|
|
|
with self.precision_plugin.val_step_context(), self.training_type_plugin.val_step_context():
|
|
return self.training_type_plugin.validation_step(*step_kwargs.values())
|
|
|
|
def test_step(self, step_kwargs: Dict[str, Union[Any, int]]) -> Optional[STEP_OUTPUT]:
|
|
"""The actual test step.
|
|
|
|
Args:
|
|
step_kwargs: the arguments for the models test step. Can consist of the following:
|
|
|
|
- batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]):
|
|
The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list.
|
|
- batch_idx (int): The index of this batch.
|
|
- dataloader_idx (int): The index of the dataloader that produced this batch
|
|
(only if multiple test dataloaders used).
|
|
"""
|
|
step_kwargs = self.to_device(step_kwargs)
|
|
|
|
with self.precision_plugin.test_step_context(), self.training_type_plugin.test_step_context():
|
|
return self.training_type_plugin.test_step(*step_kwargs.values())
|
|
|
|
def predict_step(self, step_kwargs: Dict[str, Union[Any, int]]) -> STEP_OUTPUT:
|
|
"""The actual predict step.
|
|
|
|
Args:
|
|
step_kwargs: the arguments for the models predict step. Can consist of the following:
|
|
|
|
- batch (:class:`~torch.Tensor` | (:class:`~torch.Tensor`, ...) | [:class:`~torch.Tensor`, ...]):
|
|
The output of your :class:`~torch.utils.data.DataLoader`. A tensor, tuple or list.
|
|
- batch_idx (int): The index of this batch.
|
|
- dataloader_idx (int): The index of the dataloader that produced this batch
|
|
(only if multiple predict dataloaders used).
|
|
"""
|
|
step_kwargs = self.to_device(step_kwargs)
|
|
|
|
with self.precision_plugin.predict_step_context(), self.training_type_plugin.predict_step_context():
|
|
return self.training_type_plugin.predict_step(*step_kwargs.values())
|
|
|
|
def training_step_end(self, output: STEP_OUTPUT) -> STEP_OUTPUT:
|
|
"""A hook to do something at the end of the training step
|
|
|
|
Args:
|
|
output: the output of the training step
|
|
"""
|
|
return self.training_type_plugin.training_step_end(output)
|
|
|
|
def test_step_end(self, output: Optional[STEP_OUTPUT]) -> Optional[STEP_OUTPUT]:
|
|
"""A hook to do something at the end of the test step
|
|
|
|
Args:
|
|
output: the output of the test step
|
|
"""
|
|
return self.training_type_plugin.test_step_end(output)
|
|
|
|
def validation_step_end(self, output: Optional[STEP_OUTPUT]) -> Optional[STEP_OUTPUT]:
|
|
"""A hook to do something at the end of the validation step
|
|
|
|
Args:
|
|
output: the output of the validation step
|
|
"""
|
|
return self.training_type_plugin.validation_step_end(output)
|
|
|
|
def backward(
|
|
self,
|
|
closure_loss: Tensor,
|
|
optimizer: Optimizer,
|
|
optimizer_idx: int,
|
|
should_accumulate: bool,
|
|
*args: Any,
|
|
**kwargs: Any,
|
|
) -> Tensor:
|
|
"""Forwards backward-calls to the precision plugin.
|
|
|
|
Args:
|
|
closure_loss: a tensor holding the loss value to backpropagate
|
|
should_accumulate: whether to accumulate gradients
|
|
"""
|
|
self.training_type_plugin.pre_backward(closure_loss, should_accumulate, optimizer, optimizer_idx)
|
|
|
|
output = self.precision_plugin.backward(
|
|
self.lightning_module, closure_loss, optimizer, optimizer_idx, should_accumulate, *args, **kwargs
|
|
)
|
|
|
|
self.training_type_plugin.post_backward(closure_loss, should_accumulate, optimizer, optimizer_idx)
|
|
|
|
return output
|
|
|
|
def optimizer_step(self, optimizer: Optimizer, opt_idx: int, lambda_closure: Callable, **kwargs: Any) -> None:
|
|
"""performs the actual optimizer step.
|
|
|
|
Args:
|
|
optimizer: the optimizer performing the step
|
|
opt_idx: index of the current optimizer
|
|
lambda_closure: closure calculating the loss value
|
|
|
|
"""
|
|
make_optimizer_step = self.precision_plugin.pre_optimizer_step(
|
|
self.lightning_module, optimizer, opt_idx, lambda_closure, **kwargs
|
|
)
|
|
if make_optimizer_step:
|
|
self.run_optimizer_step(optimizer, opt_idx, lambda_closure, **kwargs)
|
|
self.precision_plugin.post_optimizer_step(optimizer, opt_idx)
|
|
self.training_type_plugin.post_optimizer_step(optimizer, opt_idx, **kwargs)
|
|
|
|
def run_optimizer_step(
|
|
self, optimizer: Optimizer, optimizer_idx: int, lambda_closure: Callable, **kwargs: Any
|
|
) -> None:
|
|
self.training_type_plugin.optimizer_step(optimizer, lambda_closure=lambda_closure, **kwargs)
|
|
|
|
def optimizer_zero_grad(self, current_epoch: int, batch_idx: int, optimizer: Optimizer, opt_idx: int) -> None:
|
|
"""Zeros all model parameter's gradients"""
|
|
model_ref = self.lightning_module
|
|
model_ref.optimizer_zero_grad(current_epoch, batch_idx, optimizer, opt_idx)
|
|
|
|
def clip_gradients(
|
|
self,
|
|
optimizer: Optimizer,
|
|
clip_val: Union[int, float],
|
|
gradient_clip_algorithm: GradClipAlgorithmType = GradClipAlgorithmType.NORM,
|
|
) -> None:
|
|
"""clips all the optimizer parameters to the given value"""
|
|
self.precision_plugin.clip_gradients(
|
|
optimizer,
|
|
clip_val,
|
|
gradient_clip_algorithm=gradient_clip_algorithm,
|
|
model=self.model,
|
|
)
|
|
|
|
def on_train_epoch_end(self) -> None:
|
|
"""Hook to do something on the end of an training epoch."""
|
|
pass
|
|
|
|
def on_train_end(self) -> None:
|
|
"""Hook to do something at the end of the training"""
|
|
pass
|
|
|
|
def setup_optimizers(self, trainer: 'pl.Trainer') -> None:
|
|
"""
|
|
Creates optimizers and schedulers
|
|
|
|
Args:
|
|
trainer: the Trainer, these optimizers should be connected to
|
|
"""
|
|
if trainer.state.fn not in (TrainerFn.FITTING, TrainerFn.TUNING):
|
|
return
|
|
optimizers, lr_schedulers, optimizer_frequencies = self.training_type_plugin.init_optimizers(
|
|
trainer=trainer, model=self.lightning_module
|
|
)
|
|
self.optimizers = optimizers
|
|
self.lr_schedulers = lr_schedulers
|
|
self.optimizer_frequencies = optimizer_frequencies
|
|
|
|
def setup_training_type_plugin(self, model: 'pl.LightningModule') -> None:
|
|
"""Attaches the training type plugin to the accelerator."""
|
|
self.training_type_plugin.setup(model)
|
|
|
|
def setup_precision_plugin(self) -> None:
|
|
"""Attaches the precision plugin to the accelerator"""
|
|
model, optimizers, schedulers = self.precision_plugin.connect(self.model, self.optimizers, self.lr_schedulers)
|
|
self.model = model
|
|
self.optimizers = optimizers
|
|
self.schedulers = schedulers
|
|
|
|
def to_device(self, step_kwargs: Dict[str, Union[Any, int]]) -> Dict[str, Union[Any, int]]:
|
|
"""Pushes the batch to the root device"""
|
|
step_kwargs['batch'] = self.batch_to_device(
|
|
step_kwargs['batch'], self.root_device, dataloader_idx=step_kwargs.get('dataloader_idx', None)
|
|
)
|
|
return step_kwargs
|
|
|
|
@property
|
|
def amp_backend(self) -> Optional[LightningEnum]:
|
|
if isinstance(self.precision_plugin, ApexMixedPrecisionPlugin):
|
|
return AMPType.APEX
|
|
elif isinstance(self.precision_plugin, NativeMixedPrecisionPlugin):
|
|
return AMPType.NATIVE
|
|
return None
|
|
|
|
@property
|
|
def precision(self) -> Union[str, int]:
|
|
return self.precision_plugin.precision
|
|
|
|
@property
|
|
def scaler(self) -> Optional['GradScaler']:
|
|
return getattr(self.precision_plugin, 'scaler', None)
|
|
|
|
@property
|
|
def rpc_enabled(self) -> bool:
|
|
return self.training_type_plugin.rpc_enabled
|
|
|
|
def optimizer_state(self, optimizer: Optimizer) -> Dict[str, Tensor]:
|
|
"""
|
|
Returns state of an optimizer. Allows for syncing/collating optimizer state from processes in custom
|
|
plugins.
|
|
"""
|
|
return getattr(self.training_type_plugin, 'optimizer_state', lambda x: x.state_dict())(optimizer)
|
|
|
|
def lightning_module_state_dict(self) -> Dict[str, Union[Any, Tensor]]:
|
|
"""
|
|
Returns state of model. Allows for syncing/collating model state from processes in custom plugins.
|
|
"""
|
|
return self.training_type_plugin.lightning_module_state_dict()
|
|
|
|
def on_save(self, checkpoint: Dict[str, Union[Any, Tensor]]) -> Dict[str, Union[Any, Tensor]]:
|
|
return self.training_type_plugin.on_save(checkpoint)
|
|
|
|
def barrier(self, name: Optional[str] = None) -> None:
|
|
self.training_type_plugin.barrier(name=name)
|
|
|
|
def broadcast(self, obj: object, src: int = 0) -> object:
|
|
"""Broadcasts an object to all processes, such that the src object is broadcast to all other ranks if needed.
|
|
|
|
Args:
|
|
obj: Object to broadcast to all process, usually a tensor or collection of tensors.
|
|
src: The source rank of which the object will be broadcast from
|
|
"""
|
|
return self.training_type_plugin.broadcast(obj, src)
|
|
|
|
def all_gather(self, tensor: Tensor, group: Optional[Any] = None, sync_grads: bool = False) -> Tensor:
|
|
"""
|
|
Function to gather a tensor from several distributed processes.
|
|
|
|
Args:
|
|
tensor: tensor of shape (batch, ...)
|
|
group: the process group to gather results from. Defaults to all processes (world)
|
|
sync_grads: flag that allows users to synchronize gradients for all_gather op
|
|
|
|
Return:
|
|
A tensor of shape (world_size, batch, ...)
|
|
"""
|
|
return self.training_type_plugin.all_gather(tensor, group=group, sync_grads=sync_grads)
|
|
|
|
def process_dataloader(self, dataloader: Union[Iterable, DataLoader]) -> Union[Iterable, DataLoader]:
|
|
"""Wraps the dataloader if necessary
|
|
|
|
Args:
|
|
dataloader: iterable. Ideally of type: :class:`torch.utils.data.DataLoader`
|
|
"""
|
|
return self.training_type_plugin.process_dataloader(dataloader)
|
|
|
|
@property
|
|
def results(self) -> Any:
|
|
"""
|
|
The results of the last run will be cached within the training type plugin.
|
|
In distributed training, we make sure to transfer the results to the appropriate master process.
|
|
"""
|
|
return self.training_type_plugin.results
|
|
|
|
@contextlib.contextmanager
|
|
def model_sharded_context(self) -> Generator[None, None, None]:
|
|
"""
|
|
Provide hook to create modules in a distributed aware context. This is useful for when we'd like to
|
|
shard the model instantly - useful for extremely large models. Can save memory and
|
|
initialization time.
|
|
|
|
Returns:
|
|
Model parallel context.
|
|
"""
|
|
with self.training_type_plugin.model_sharded_context():
|
|
yield
|
|
|
|
# todo: remove in v1.5
|
|
def connect_training_type_plugin(self, plugin: TrainingTypePlugin, model: 'pl.LightningModule') -> None:
|
|
"""
|
|
Attaches the training type plugin to the accelerator.
|
|
Also transfers ownership of the model to this plugin
|
|
|
|
.. deprecated::v1.3
|
|
Will be removed in v1.5.0.
|
|
"""
|
|
rank_zero_warn(
|
|
'Accelerator method `connect_training_type_plugin` was deprecated in v1.3.'
|
|
' It will be removed in v1.5.'
|
|
)
|
|
self.setup_training_type_plugin(model)
|
|
|
|
# todo: remove in v1.5
|
|
def connect_precision_plugin(self, plugin: PrecisionPlugin) -> None:
|
|
"""Attaches the precision plugin to the accelerator
|
|
|
|
.. deprecated::v1.3
|
|
Will be removed in v1.5.0.
|
|
"""
|
|
rank_zero_warn(
|
|
'Accelerator method `connect_precision_plugin` was deprecated in v1.3.'
|
|
' It will be removed in v1.5.'
|
|
)
|
|
self.setup_precision_plugin()
|
|
|
|
def save_checkpoint(self, checkpoint: Dict[str, Any], filepath: str) -> None:
|
|
"""Save model/training states as a checkpoint file through state-dump and file-write.
|
|
|
|
Args:
|
|
checkpoint: dict containing model and trainer state
|
|
filepath: write-target file's path
|
|
"""
|
|
self.training_type_plugin.save_checkpoint(checkpoint, filepath)
|
|
|
|
@property
|
|
def call_configure_sharded_model_hook(self) -> bool:
|
|
"""
|
|
Allow model parallel hook to be called in suitable environments determined by the training type plugin.
|
|
This is useful for when we want to shard the model once within fit.
|
|
|
|
Returns:
|
|
True if we want to call the model parallel setup hook.
|
|
"""
|
|
return self.training_type_plugin.call_configure_sharded_model_hook
|
|
|
|
@call_configure_sharded_model_hook.setter
|
|
def call_configure_sharded_model_hook(self, mode: bool) -> None:
|
|
self.training_type_plugin.call_configure_sharded_model_hook = mode
|
|
|
|
@property
|
|
def setup_optimizers_in_pre_dispatch(self) -> bool:
|
|
"""
|
|
Override to delay setting optimizers and schedulers till after dispatch.
|
|
This is useful when the `TrainingTypePlugin` requires operating on the wrapped accelerator model.
|
|
However this may break certain precision plugins such as APEX which require optimizers to be set.
|
|
|
|
Returns:
|
|
If True, delay setup optimizers until `pre_dispatch`, else call within `setup`.
|
|
"""
|
|
return self.training_type_plugin.setup_optimizers_in_pre_dispatch
|
|
|
|
def update_global_step(self, total_batch_idx: int, current_global_step: int) -> int:
|
|
return self.training_type_plugin.update_global_step(total_batch_idx, current_global_step)
|