lightning/tests/tests_pytorch/helpers/pipelines.py

121 lines
4.6 KiB
Python

# Copyright The Lightning AI team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import torch
from lightning.pytorch import LightningDataModule, LightningModule, Trainer
from lightning.pytorch.demos.boring_classes import BoringModel
from lightning.pytorch.utilities.imports import _TORCHMETRICS_GREATER_EQUAL_0_11 as _TM_GE_0_11
from torchmetrics.functional import accuracy
from tests_pytorch.helpers.utils import get_default_logger, load_model_from_checkpoint
def run_model_test_without_loggers(
trainer_options: dict, model: LightningModule, data: LightningDataModule = None, min_acc: float = 0.50
):
# fit model
trainer = Trainer(**trainer_options)
trainer.fit(model, datamodule=data)
# correct result and ok accuracy
assert trainer.state.finished, f"Training failed with {trainer.state}"
model2 = load_model_from_checkpoint(trainer.checkpoint_callback.best_model_path, type(model))
# test new model accuracy
test_loaders = model2.test_dataloader() if not data else data.test_dataloader()
if not isinstance(test_loaders, list):
test_loaders = [test_loaders]
if not isinstance(model2, BoringModel):
for dataloader in test_loaders:
run_model_prediction(model2, dataloader, min_acc=min_acc)
def run_model_test(
trainer_options,
model: LightningModule,
data: LightningDataModule = None,
version=None,
with_hpc: bool = True,
min_acc: float = 0.25,
min_change_ratio: float = 0.03,
):
save_dir = trainer_options["default_root_dir"]
# logger file to get meta
logger = get_default_logger(save_dir, version=version)
trainer_options.update(logger=logger)
trainer = Trainer(**trainer_options)
with torch.no_grad():
initial_values = torch.cat([x.view(-1) for x in model.parameters()])
trainer.fit(model, datamodule=data)
with torch.no_grad():
post_train_values = torch.cat([x.view(-1) for x in model.parameters()])
# Check that the model has changed post-training
change_ratio = torch.norm(initial_values - post_train_values) / torch.norm(initial_values)
assert change_ratio >= min_change_ratio, (
f"The change in the model's parameter norm is {change_ratio:.1f}"
f" relative to the initial norm, but expected a change by >={min_change_ratio}"
)
if trainer.world_size != trainer.num_devices:
# we're in multinode. unless the filesystem is shared, only the main node will have access to the checkpoint
# since we cannot know this, the code below needs to be skipped
return
# test model loading
_ = load_model_from_checkpoint(trainer.checkpoint_callback.best_model_path, type(model))
# test new model accuracy
test_loaders = model.test_dataloader() if not data else data.test_dataloader()
if not isinstance(test_loaders, list):
test_loaders = [test_loaders]
if not isinstance(model, BoringModel):
for dataloader in test_loaders:
run_model_prediction(model, dataloader, min_acc=min_acc)
if with_hpc:
# test HPC saving
# save logger to make sure we get all the metrics
if logger:
logger.finalize("finished")
hpc_save_path = trainer._checkpoint_connector.hpc_save_path(save_dir)
trainer.save_checkpoint(hpc_save_path)
# test HPC loading
checkpoint_path = trainer._checkpoint_connector._CheckpointConnector__get_max_ckpt_path_from_folder(save_dir)
trainer._checkpoint_connector.restore(checkpoint_path)
@torch.no_grad()
def run_model_prediction(trained_model, dataloader, min_acc=0.50):
orig_device = trained_model.device
# run prediction on 1 batch
trained_model.cpu()
trained_model.eval()
batch = next(iter(dataloader))
x, y = batch
x = x.flatten(1)
y_hat = trained_model(x)
metric = partial(accuracy, task="multiclass") if _TM_GE_0_11 else accuracy
acc = metric(y_hat.cpu(), y.cpu(), top_k=2, num_classes=y_hat.size(-1)).item()
assert acc >= min_acc, f"This model is expected to get > {min_acc} in test set (it got {acc})"
trained_model.to(orig_device)