lightning/pl_examples/domain_templates/generative_adversarial_net.py

280 lines
9.1 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
To run this template just do:
python generative_adversarial_net.py
After a few epochs, launch TensorBoard to see the images being generated at every batch:
tensorboard --logdir default
"""
import os
from argparse import ArgumentParser, Namespace
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F # noqa
from torch.utils.data import DataLoader
from pl_examples import _TORCHVISION_AVAILABLE, _TORCHVISION_MNIST_AVAILABLE, cli_lightning_logo
from pytorch_lightning.core import LightningDataModule, LightningModule
from pytorch_lightning.trainer import Trainer
if _TORCHVISION_AVAILABLE:
import torchvision
from torchvision import transforms
if _TORCHVISION_MNIST_AVAILABLE:
from torchvision.datasets import MNIST
else:
from tests.helpers.datasets import MNIST
class Generator(nn.Module):
"""
>>> Generator(img_shape=(1, 8, 8)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
Generator(
(model): Sequential(...)
)
"""
def __init__(self, latent_dim: int = 100, img_shape: tuple = (1, 28, 28)):
super().__init__()
self.img_shape = img_shape
def block(in_feat, out_feat, normalize=True):
layers = [nn.Linear(in_feat, out_feat)]
if normalize:
layers.append(nn.BatchNorm1d(out_feat, 0.8))
layers.append(nn.LeakyReLU(0.2, inplace=True))
return layers
self.model = nn.Sequential(
*block(latent_dim, 128, normalize=False),
*block(128, 256),
*block(256, 512),
*block(512, 1024),
nn.Linear(1024, int(np.prod(img_shape))),
nn.Tanh(),
)
def forward(self, z):
img = self.model(z)
img = img.view(img.size(0), *self.img_shape)
return img
class Discriminator(nn.Module):
"""
>>> Discriminator(img_shape=(1, 28, 28)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
Discriminator(
(model): Sequential(...)
)
"""
def __init__(self, img_shape):
super().__init__()
self.model = nn.Sequential(
nn.Linear(int(np.prod(img_shape)), 512),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(512, 256),
nn.LeakyReLU(0.2, inplace=True),
nn.Linear(256, 1),
)
def forward(self, img):
img_flat = img.view(img.size(0), -1)
validity = self.model(img_flat)
return validity
class GAN(LightningModule):
"""
>>> GAN(img_shape=(1, 8, 8)) # doctest: +ELLIPSIS +NORMALIZE_WHITESPACE
GAN(
(generator): Generator(
(model): Sequential(...)
)
(discriminator): Discriminator(
(model): Sequential(...)
)
)
"""
def __init__(
self,
img_shape: tuple = (1, 28, 28),
lr: float = 0.0002,
b1: float = 0.5,
b2: float = 0.999,
latent_dim: int = 100,
):
super().__init__()
self.save_hyperparameters()
# networks
self.generator = Generator(latent_dim=self.hparams.latent_dim, img_shape=img_shape)
self.discriminator = Discriminator(img_shape=img_shape)
self.validation_z = torch.randn(8, self.hparams.latent_dim)
self.example_input_array = torch.zeros(2, self.hparams.latent_dim)
@staticmethod
def add_argparse_args(parent_parser: ArgumentParser):
parser = ArgumentParser(parents=[parent_parser], add_help=False)
parser.add_argument("--lr", type=float, default=0.0002, help="adam: learning rate")
parser.add_argument("--b1", type=float, default=0.5, help="adam: decay of first order momentum of gradient")
parser.add_argument("--b2", type=float, default=0.999, help="adam: decay of second order momentum of gradient")
parser.add_argument("--latent_dim", type=int, default=100, help="dimensionality of the latent space")
return parser
def forward(self, z):
return self.generator(z)
@staticmethod
def adversarial_loss(y_hat, y):
return F.binary_cross_entropy_with_logits(y_hat, y)
def training_step(self, batch, batch_idx, optimizer_idx):
imgs, _ = batch
# sample noise
z = torch.randn(imgs.shape[0], self.hparams.latent_dim)
z = z.type_as(imgs)
# train generator
if optimizer_idx == 0:
# ground truth result (ie: all fake)
# put on GPU because we created this tensor inside training_loop
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
# adversarial loss is binary cross-entropy
g_loss = self.adversarial_loss(self.discriminator(self(z)), valid)
tqdm_dict = {'g_loss': g_loss}
self.log_dict(tqdm_dict)
return g_loss
# train discriminator
if optimizer_idx == 1:
# Measure discriminator's ability to classify real from generated samples
# how well can it label as real?
valid = torch.ones(imgs.size(0), 1)
valid = valid.type_as(imgs)
real_loss = self.adversarial_loss(self.discriminator(imgs), valid)
# how well can it label as fake?
fake = torch.zeros(imgs.size(0), 1)
fake = fake.type_as(imgs)
fake_loss = self.adversarial_loss(self.discriminator(self(z).detach()), fake)
# discriminator loss is the average of these
d_loss = (real_loss + fake_loss) / 2
tqdm_dict = {'d_loss': d_loss}
self.log_dict(tqdm_dict)
return d_loss
def configure_optimizers(self):
lr = self.hparams.lr
b1 = self.hparams.b1
b2 = self.hparams.b2
opt_g = torch.optim.Adam(self.generator.parameters(), lr=lr, betas=(b1, b2))
opt_d = torch.optim.Adam(self.discriminator.parameters(), lr=lr, betas=(b1, b2))
return [opt_g, opt_d], []
def on_epoch_end(self):
z = self.validation_z.type_as(self.generator.model[0].weight)
# log sampled images
sample_imgs = self(z)
grid = torchvision.utils.make_grid(sample_imgs)
self.logger.experiment.add_image('generated_images', grid, self.current_epoch)
class MNISTDataModule(LightningDataModule):
"""
>>> MNISTDataModule() # doctest: +ELLIPSIS
<...generative_adversarial_net.MNISTDataModule object at ...>
"""
def __init__(self, batch_size: int = 64, data_path: str = os.getcwd(), num_workers: int = 4):
super().__init__()
self.batch_size = batch_size
self.data_path = data_path
self.num_workers = num_workers
self.transform = transforms.Compose([transforms.ToTensor(), transforms.Normalize([0.5], [0.5])])
self.dims = (1, 28, 28)
def prepare_data(self, stage=None):
# Use this method to do things that might write to disk or that need to be done only from a single GPU
# in distributed settings. Like downloading the dataset for the first time.
MNIST(self.data_path, train=True, download=True, transform=transforms.ToTensor())
def setup(self, stage=None):
# There are also data operations you might want to perform on every GPU, such as applying transforms
# defined explicitly in your datamodule or assigned in init.
self.mnist_train = MNIST(self.data_path, train=True, transform=self.transform)
def train_dataloader(self):
return DataLoader(self.mnist_train, batch_size=self.batch_size, num_workers=self.num_workers)
def main(args: Namespace) -> None:
# ------------------------
# 1 INIT LIGHTNING MODEL
# ------------------------
model = GAN(lr=args.lr, b1=args.b1, b2=args.b2, latent_dim=args.latent_dim)
# ------------------------
# 2 INIT TRAINER
# ------------------------
# If use distubuted training PyTorch recommends to use DistributedDataParallel.
# See: https://pytorch.org/docs/stable/nn.html#torch.nn.DataParallel
dm = MNISTDataModule.from_argparse_args(args)
trainer = Trainer.from_argparse_args(args)
# ------------------------
# 3 START TRAINING
# ------------------------
trainer.fit(model, dm)
if __name__ == '__main__':
cli_lightning_logo()
parser = ArgumentParser()
# Add program level args, if any.
# ------------------------
# Add LightningDataLoader args
parser = MNISTDataModule.add_argparse_args(parser)
# Add model specific args
parser = GAN.add_argparse_args(parser)
# Add trainer args
parser = Trainer.add_argparse_args(parser)
# Parse all arguments
args = parser.parse_args()
main(args)