lightning/tests/models/test_gpu.py

377 lines
14 KiB
Python

# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import operator
import os
from collections import namedtuple
from unittest import mock
from unittest.mock import patch
import pytest
import torch
import tests.helpers.pipelines as tpipes
import tests.helpers.utils as tutils
from pytorch_lightning import Trainer
from pytorch_lightning.plugins.environments import TorchElasticEnvironment
from pytorch_lightning.utilities import device_parser
from pytorch_lightning.utilities.exceptions import MisconfigurationException
from pytorch_lightning.utilities.imports import _compare_version
from tests.helpers import BoringModel
from tests.helpers.datamodules import ClassifDataModule
from tests.helpers.imports import Batch, Dataset, Example, Field, LabelField
from tests.helpers.runif import RunIf
from tests.helpers.simple_models import ClassificationModel
PL_VERSION_LT_1_5 = _compare_version("pytorch_lightning", operator.lt, "1.5")
PRETEND_N_OF_GPUS = 16
@RunIf(min_gpus=2)
def test_multi_gpu_none_backend(tmpdir):
"""Make sure when using multiple GPUs the user can't use `distributed_backend = None`."""
tutils.set_random_master_port()
trainer_options = dict(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.2,
limit_val_batches=0.2,
gpus=2,
)
dm = ClassifDataModule()
model = ClassificationModel()
tpipes.run_model_test(trainer_options, model, dm)
@RunIf(min_gpus=2)
@pytest.mark.parametrize("gpus", [1, [0], [1]])
def test_single_gpu_model(tmpdir, gpus):
"""Make sure single GPU works (DP mode)."""
trainer_options = dict(
default_root_dir=tmpdir,
progress_bar_refresh_rate=0,
max_epochs=1,
limit_train_batches=0.1,
limit_val_batches=0.1,
gpus=gpus,
)
model = BoringModel()
tpipes.run_model_test(trainer_options, model)
@pytest.fixture
def mocked_device_count(monkeypatch):
def device_count():
return PRETEND_N_OF_GPUS
def is_available():
return True
monkeypatch.setattr(torch.cuda, "is_available", is_available)
monkeypatch.setattr(torch.cuda, "device_count", device_count)
@pytest.fixture
def mocked_device_count_0(monkeypatch):
def device_count():
return 0
monkeypatch.setattr(torch.cuda, "device_count", device_count)
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(
["gpus", "expected_num_gpus", "distributed_backend"],
[
pytest.param(None, 0, None, id="None - expect 0 gpu to use."),
pytest.param(0, 0, None, id="Oth gpu, expect 1 gpu to use."),
pytest.param(1, 1, None, id="1st gpu, expect 1 gpu to use."),
pytest.param(-1, PRETEND_N_OF_GPUS, "ddp", id="-1 - use all gpus"),
pytest.param("-1", PRETEND_N_OF_GPUS, "ddp", id="'-1' - use all gpus"),
pytest.param(3, 3, "ddp", id="3rd gpu - 1 gpu to use (backend:ddp)"),
],
)
def test_trainer_gpu_parse(mocked_device_count, gpus, expected_num_gpus, distributed_backend):
assert Trainer(gpus=gpus, accelerator=distributed_backend).num_gpus == expected_num_gpus
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(
["gpus", "expected_num_gpus", "distributed_backend"],
[
pytest.param(None, 0, None, id="None - expect 0 gpu to use."),
pytest.param(None, 0, "ddp", id="None - expect 0 gpu to use."),
],
)
def test_trainer_num_gpu_0(mocked_device_count_0, gpus, expected_num_gpus, distributed_backend):
assert Trainer(gpus=gpus, accelerator=distributed_backend).num_gpus == expected_num_gpus
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(
["gpus", "expected_root_gpu", "distributed_backend"],
[
pytest.param(None, None, "ddp", id="None is None"),
pytest.param(0, None, "ddp", id="O gpus, expect gpu root device to be None."),
pytest.param(1, 0, "ddp", id="1 gpu, expect gpu root device to be 0."),
pytest.param(-1, 0, "ddp", id="-1 - use all gpus, expect gpu root device to be 0."),
pytest.param("-1", 0, "ddp", id="'-1' - use all gpus, expect gpu root device to be 0."),
pytest.param(3, 0, "ddp", id="3 gpus, expect gpu root device to be 0.(backend:ddp)"),
],
)
def test_root_gpu_property(mocked_device_count, gpus, expected_root_gpu, distributed_backend):
assert Trainer(gpus=gpus, accelerator=distributed_backend).root_gpu == expected_root_gpu
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(
["gpus", "expected_root_gpu", "distributed_backend"],
[
pytest.param(None, None, None, id="None is None"),
pytest.param(None, None, "ddp", id="None is None"),
pytest.param(0, None, "ddp", id="None is None"),
],
)
def test_root_gpu_property_0_passing(mocked_device_count_0, gpus, expected_root_gpu, distributed_backend):
assert Trainer(gpus=gpus, accelerator=distributed_backend).root_gpu == expected_root_gpu
# Asking for a gpu when non are available will result in a MisconfigurationException
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(
["gpus", "expected_root_gpu", "distributed_backend"],
[
pytest.param(1, None, "ddp"),
pytest.param(3, None, "ddp"),
pytest.param(3, None, "ddp"),
pytest.param([1, 2], None, "ddp"),
pytest.param([0, 1], None, "ddp"),
pytest.param(-1, None, "ddp"),
pytest.param("-1", None, "ddp"),
],
)
def test_root_gpu_property_0_raising(mocked_device_count_0, gpus, expected_root_gpu, distributed_backend):
with pytest.raises(MisconfigurationException):
Trainer(gpus=gpus, accelerator=distributed_backend)
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(
["gpus", "expected_root_gpu"],
[
pytest.param(None, None, id="No gpus, expect gpu root device to be None"),
pytest.param([0], 0, id="Oth gpu, expect gpu root device to be 0."),
pytest.param([1], 1, id="1st gpu, expect gpu root device to be 1."),
pytest.param([3], 3, id="3rd gpu, expect gpu root device to be 3."),
pytest.param([1, 2], 1, id="[1, 2] gpus, expect gpu root device to be 1."),
],
)
def test_determine_root_gpu_device(gpus, expected_root_gpu):
assert device_parser.determine_root_gpu_device(gpus) == expected_root_gpu
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(
["gpus", "expected_gpu_ids"],
[
pytest.param(None, None),
pytest.param(0, None),
pytest.param(1, [0]),
pytest.param(3, [0, 1, 2]),
pytest.param(-1, list(range(PRETEND_N_OF_GPUS)), id="-1 - use all gpus"),
pytest.param([0], [0]),
pytest.param([1, 3], [1, 3]),
pytest.param((1, 3), [1, 3]),
pytest.param("0", None),
pytest.param("3", [0, 1, 2]),
pytest.param("1, 3", [1, 3]),
pytest.param("2,", [2]),
pytest.param("-1", list(range(PRETEND_N_OF_GPUS)), id="'-1' - use all gpus"),
],
)
def test_parse_gpu_ids(mocked_device_count, gpus, expected_gpu_ids):
assert device_parser.parse_gpu_ids(gpus) == expected_gpu_ids
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize(
["gpus"],
[
pytest.param(0.1),
pytest.param(-2),
pytest.param(False),
pytest.param([]),
pytest.param([-1]),
pytest.param([None]),
pytest.param(["0"]),
pytest.param([0, 0]),
],
)
def test_parse_gpu_fail_on_unsupported_inputs(mocked_device_count, gpus):
with pytest.raises(MisconfigurationException):
device_parser.parse_gpu_ids(gpus)
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize("gpus", [[1, 2, 19], -1, "-1"])
def test_parse_gpu_fail_on_non_existent_id(mocked_device_count_0, gpus):
with pytest.raises(MisconfigurationException):
device_parser.parse_gpu_ids(gpus)
@pytest.mark.gpus_param_tests
def test_parse_gpu_fail_on_non_existent_id_2(mocked_device_count):
with pytest.raises(MisconfigurationException):
device_parser.parse_gpu_ids([1, 2, 19])
@pytest.mark.gpus_param_tests
@pytest.mark.parametrize("gpus", [-1, "-1"])
def test_parse_gpu_returns_none_when_no_devices_are_available(mocked_device_count_0, gpus):
with pytest.raises(MisconfigurationException):
device_parser.parse_gpu_ids(gpus)
@mock.patch.dict(
os.environ,
{
"CUDA_VISIBLE_DEVICES": "0",
"LOCAL_RANK": "1",
"GROUP_RANK": "1",
"RANK": "3",
"WORLD_SIZE": "4",
"LOCAL_WORLD_SIZE": "2",
},
)
@mock.patch("torch.cuda.device_count", return_value=1)
@pytest.mark.parametrize("gpus", [[0, 1, 2], 2, "0"])
def test_torchelastic_gpu_parsing(mocked_device_count, gpus):
"""
Ensure when using torchelastic and nproc_per_node is set to the default of 1 per GPU device
That we omit sanitizing the gpus as only one of the GPUs is visible.
"""
trainer = Trainer(gpus=gpus)
assert isinstance(trainer.accelerator_connector.cluster_environment, TorchElasticEnvironment)
assert trainer.accelerator_connector.parallel_device_ids == device_parser.parse_gpu_ids(gpus)
assert trainer.gpus == gpus
@RunIf(min_gpus=1)
def test_single_gpu_batch_parse():
trainer = Trainer(gpus=1)
# non-transferrable types
primitive_objects = [None, {}, [], 1.0, "x", [None, 2], {"x": (1, 2), "y": None}]
for batch in primitive_objects:
data = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
assert data == batch
# batch is just a tensor
batch = torch.rand(2, 3)
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
assert batch.device.index == 0 and batch.type() == "torch.cuda.FloatTensor"
# tensor list
batch = [torch.rand(2, 3), torch.rand(2, 3)]
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
assert batch[0].device.index == 0 and batch[0].type() == "torch.cuda.FloatTensor"
assert batch[1].device.index == 0 and batch[1].type() == "torch.cuda.FloatTensor"
# tensor list of lists
batch = [[torch.rand(2, 3), torch.rand(2, 3)]]
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.cuda.FloatTensor"
assert batch[0][1].device.index == 0 and batch[0][1].type() == "torch.cuda.FloatTensor"
# tensor dict
batch = [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)}]
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
assert batch[0]["a"].device.index == 0 and batch[0]["a"].type() == "torch.cuda.FloatTensor"
assert batch[0]["b"].device.index == 0 and batch[0]["b"].type() == "torch.cuda.FloatTensor"
# tuple of tensor list and list of tensor dict
batch = ([torch.rand(2, 3) for _ in range(2)], [{"a": torch.rand(2, 3), "b": torch.rand(2, 3)} for _ in range(2)])
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
assert batch[0][0].device.index == 0 and batch[0][0].type() == "torch.cuda.FloatTensor"
assert batch[1][0]["a"].device.index == 0
assert batch[1][0]["a"].type() == "torch.cuda.FloatTensor"
assert batch[1][0]["b"].device.index == 0
assert batch[1][0]["b"].type() == "torch.cuda.FloatTensor"
# namedtuple of tensor
BatchType = namedtuple("BatchType", ["a", "b"])
batch = [BatchType(a=torch.rand(2, 3), b=torch.rand(2, 3)) for _ in range(2)]
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
assert batch[0].a.device.index == 0
assert batch[0].a.type() == "torch.cuda.FloatTensor"
# non-Tensor that has `.to()` defined
class CustomBatchType:
def __init__(self):
self.a = torch.rand(2, 2)
def to(self, *args, **kwargs):
self.a = self.a.to(*args, **kwargs)
return self
batch = trainer.accelerator.batch_to_device(CustomBatchType(), torch.device("cuda:0"))
assert batch.a.type() == "torch.cuda.FloatTensor"
# torchtext.data.Batch
samples = [
{"text": "PyTorch Lightning is awesome!", "label": 0},
{"text": "Please make it work with torchtext", "label": 1},
]
text_field = Field()
label_field = LabelField()
fields = {"text": ("text", text_field), "label": ("label", label_field)}
examples = [Example.fromdict(sample, fields) for sample in samples]
dataset = Dataset(examples=examples, fields=fields.values())
# Batch runs field.process() that numericalizes tokens, but it requires to build dictionary first
text_field.build_vocab(dataset)
label_field.build_vocab(dataset)
batch = Batch(data=examples, dataset=dataset)
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
assert batch.text.type() == "torch.cuda.LongTensor"
assert batch.label.type() == "torch.cuda.LongTensor"
@RunIf(min_gpus=1)
def test_non_blocking():
"""Tests that non_blocking=True only gets passed on torch.Tensor.to, but not on other objects."""
trainer = Trainer()
batch = torch.zeros(2, 3)
with patch.object(batch, "to", wraps=batch.to) as mocked:
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
mocked.assert_called_with(torch.device("cuda", 0), non_blocking=True)
class BatchObject:
def to(self, *args, **kwargs):
pass
batch = BatchObject()
with patch.object(batch, "to", wraps=batch.to) as mocked:
batch = trainer.accelerator.batch_to_device(batch, torch.device("cuda:0"))
mocked.assert_called_with(torch.device("cuda", 0))