105 lines
3.6 KiB
Python
105 lines
3.6 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
from copy import deepcopy
|
|
|
|
import torch
|
|
|
|
import pytorch_lightning as pl
|
|
from pytorch_lightning import seed_everything, Trainer
|
|
from pytorch_lightning.callbacks import ModelCheckpoint
|
|
from tests.helpers import BoringModel
|
|
|
|
|
|
def test_finetuning_with_resume_from_checkpoint(tmpdir):
|
|
"""
|
|
This test validates that generated ModelCheckpoint is pointing to the right best_model_path during test
|
|
"""
|
|
|
|
seed_everything(4)
|
|
|
|
checkpoint_callback = ModelCheckpoint(monitor="val_loss", dirpath=tmpdir, filename="{epoch:02d}", save_top_k=-1)
|
|
|
|
class ExtendedBoringModel(BoringModel):
|
|
def configure_optimizers(self):
|
|
optimizer = torch.optim.SGD(self.layer.parameters(), lr=0.001)
|
|
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=1)
|
|
return [optimizer], [lr_scheduler]
|
|
|
|
def validation_step(self, batch, batch_idx):
|
|
output = self.layer(batch)
|
|
loss = self.loss(batch, output)
|
|
self.log("val_loss", loss, on_epoch=True, prog_bar=True)
|
|
|
|
model = ExtendedBoringModel()
|
|
model.validation_epoch_end = None
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=12,
|
|
limit_val_batches=6,
|
|
limit_test_batches=12,
|
|
callbacks=[checkpoint_callback],
|
|
logger=False,
|
|
)
|
|
trainer.fit(model)
|
|
assert os.listdir(tmpdir) == ["epoch=00.ckpt"]
|
|
|
|
best_model_paths = [checkpoint_callback.best_model_path]
|
|
results = []
|
|
|
|
for idx in range(3, 6):
|
|
# load from checkpoint
|
|
trainer = pl.Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=idx,
|
|
limit_train_batches=12,
|
|
limit_val_batches=12,
|
|
limit_test_batches=12,
|
|
resume_from_checkpoint=best_model_paths[-1],
|
|
progress_bar_refresh_rate=0,
|
|
)
|
|
trainer.fit(model)
|
|
trainer.test()
|
|
results.append(deepcopy(trainer.callback_metrics))
|
|
best_model_paths.append(trainer.checkpoint_callback.best_model_path)
|
|
|
|
for idx in range(len(results) - 1):
|
|
assert results[idx]["val_loss"] > results[idx + 1]["val_loss"]
|
|
|
|
for idx, best_model_path in enumerate(best_model_paths):
|
|
if idx == 0:
|
|
assert best_model_path.endswith(f"epoch=0{idx}.ckpt")
|
|
else:
|
|
assert f"epoch={idx + 1}" in best_model_path
|
|
|
|
|
|
def test_accumulated_gradient_batches_with_resume_from_checkpoint(tmpdir):
|
|
"""
|
|
This test validates that accumulated gradient is properly recomputed and reset on the trainer.
|
|
"""
|
|
|
|
ckpt = ModelCheckpoint(dirpath=tmpdir, save_last=True)
|
|
model = BoringModel()
|
|
trainer_kwargs = dict(
|
|
max_epochs=1, accumulate_grad_batches={0: 2}, callbacks=ckpt, limit_train_batches=1, limit_val_batches=0
|
|
)
|
|
trainer = Trainer(**trainer_kwargs)
|
|
trainer.fit(model)
|
|
|
|
trainer_kwargs["max_epochs"] = 2
|
|
trainer_kwargs["resume_from_checkpoint"] = ckpt.last_model_path
|
|
trainer = Trainer(**trainer_kwargs)
|
|
trainer.fit(model)
|