561 lines
20 KiB
Python
561 lines
20 KiB
Python
# Copyright The PyTorch Lightning team.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
import os
|
|
import pickle
|
|
import sys
|
|
from typing import Optional, Union
|
|
from unittest import mock
|
|
from unittest.mock import ANY, call, Mock
|
|
|
|
import pytest
|
|
import torch
|
|
from torch.utils.data.dataloader import DataLoader
|
|
|
|
from pytorch_lightning import Trainer
|
|
from pytorch_lightning.callbacks import ModelCheckpoint, ProgressBar, ProgressBarBase
|
|
from pytorch_lightning.callbacks.progress import tqdm
|
|
from pytorch_lightning.utilities.exceptions import MisconfigurationException
|
|
from tests.helpers.boring_model import BoringModel, RandomDataset
|
|
from tests.helpers.runif import RunIf
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"callbacks,refresh_rate",
|
|
[
|
|
([], None),
|
|
([], 1),
|
|
([], 2),
|
|
([ProgressBar(refresh_rate=1)], 0),
|
|
([ProgressBar(refresh_rate=2)], 0),
|
|
([ProgressBar(refresh_rate=2)], 1),
|
|
],
|
|
)
|
|
def test_progress_bar_on(tmpdir, callbacks: list, refresh_rate: Optional[int]):
|
|
"""Test different ways the progress bar can be turned on."""
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=callbacks,
|
|
progress_bar_refresh_rate=refresh_rate,
|
|
max_epochs=1,
|
|
overfit_batches=5,
|
|
)
|
|
|
|
progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBarBase)]
|
|
# Trainer supports only a single progress bar callback at the moment
|
|
assert len(progress_bars) == 1
|
|
assert progress_bars[0] is trainer.progress_bar_callback
|
|
|
|
|
|
@pytest.mark.parametrize("callbacks,refresh_rate", [([], 0), ([], False), ([ModelCheckpoint(dirpath="../trainer")], 0)])
|
|
def test_progress_bar_off(tmpdir, callbacks: list, refresh_rate: Union[bool, int]):
|
|
"""Test different ways the progress bar can be turned off."""
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, callbacks=callbacks, progress_bar_refresh_rate=refresh_rate)
|
|
|
|
progress_bars = [c for c in trainer.callbacks if isinstance(c, ProgressBar)]
|
|
assert 0 == len(progress_bars)
|
|
assert not trainer.progress_bar_callback
|
|
|
|
|
|
def test_progress_bar_misconfiguration():
|
|
"""Test that Trainer doesn't accept multiple progress bars."""
|
|
callbacks = [ProgressBar(), ProgressBar(), ModelCheckpoint(dirpath="../trainer")]
|
|
with pytest.raises(MisconfigurationException, match=r"^You added multiple progress bar callbacks"):
|
|
Trainer(callbacks=callbacks)
|
|
|
|
|
|
def test_progress_bar_totals(tmpdir):
|
|
"""Test that the progress finishes with the correct total steps processed."""
|
|
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, progress_bar_refresh_rate=1, max_epochs=1)
|
|
bar = trainer.progress_bar_callback
|
|
assert 0 == bar.total_train_batches
|
|
assert 0 == bar.total_val_batches
|
|
assert 0 == bar.total_test_batches
|
|
|
|
trainer.fit(model)
|
|
|
|
# check main progress bar total
|
|
n = bar.total_train_batches
|
|
m = bar.total_val_batches
|
|
assert len(trainer.train_dataloader) == n
|
|
assert bar.main_progress_bar.total == n + m
|
|
|
|
# check val progress bar total
|
|
assert sum(len(loader) for loader in trainer.val_dataloaders) == m
|
|
assert bar.val_progress_bar.total == m
|
|
|
|
# main progress bar should have reached the end (train batches + val batches)
|
|
assert bar.main_progress_bar.n == n + m
|
|
assert bar.train_batch_idx == n
|
|
|
|
# val progress bar should have reached the end
|
|
assert bar.val_progress_bar.n == m
|
|
assert bar.val_batch_idx == m
|
|
|
|
# check that the test progress bar is off
|
|
assert 0 == bar.total_test_batches
|
|
assert bar.test_progress_bar is None
|
|
|
|
trainer.validate(model)
|
|
|
|
assert bar.val_progress_bar.total == m
|
|
assert bar.val_progress_bar.n == m
|
|
assert bar.val_batch_idx == m
|
|
|
|
trainer.test(model)
|
|
|
|
# check test progress bar total
|
|
k = bar.total_test_batches
|
|
assert sum(len(loader) for loader in trainer.test_dataloaders) == k
|
|
assert bar.test_progress_bar.total == k
|
|
|
|
# test progress bar should have reached the end
|
|
assert bar.test_progress_bar.n == k
|
|
assert bar.test_batch_idx == k
|
|
|
|
|
|
def test_progress_bar_fast_dev_run(tmpdir):
|
|
model = BoringModel()
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, fast_dev_run=True)
|
|
|
|
trainer.fit(model)
|
|
|
|
progress_bar = trainer.progress_bar_callback
|
|
assert 1 == progress_bar.total_train_batches
|
|
# total val batches are known only after val dataloaders have reloaded
|
|
|
|
assert 1 == progress_bar.total_val_batches
|
|
assert 1 == progress_bar.train_batch_idx
|
|
assert 1 == progress_bar.val_batch_idx
|
|
assert 0 == progress_bar.test_batch_idx
|
|
|
|
# the main progress bar should display 2 batches (1 train, 1 val)
|
|
assert 2 == progress_bar.main_progress_bar.total
|
|
assert 2 == progress_bar.main_progress_bar.n
|
|
|
|
trainer.validate(model)
|
|
|
|
# the validation progress bar should display 1 batch
|
|
assert 1 == progress_bar.val_batch_idx
|
|
assert 1 == progress_bar.val_progress_bar.total
|
|
assert 1 == progress_bar.val_progress_bar.n
|
|
|
|
trainer.test(model)
|
|
|
|
# the test progress bar should display 1 batch
|
|
assert 1 == progress_bar.test_batch_idx
|
|
assert 1 == progress_bar.test_progress_bar.total
|
|
assert 1 == progress_bar.test_progress_bar.n
|
|
|
|
|
|
@pytest.mark.parametrize("refresh_rate", [0, 1, 50])
|
|
def test_progress_bar_progress_refresh(tmpdir, refresh_rate: int):
|
|
"""Test that the three progress bars get correctly updated when using different refresh rates."""
|
|
|
|
model = BoringModel()
|
|
|
|
class CurrentProgressBar(ProgressBar):
|
|
|
|
train_batches_seen = 0
|
|
val_batches_seen = 0
|
|
test_batches_seen = 0
|
|
|
|
def on_train_batch_start(self, trainer, pl_module, batch, batch_idx, dataloader_idx):
|
|
super().on_train_batch_start(trainer, pl_module, batch, batch_idx, dataloader_idx)
|
|
assert self.train_batch_idx == trainer.fit_loop.batch_idx
|
|
|
|
def on_train_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
super().on_train_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
|
|
assert self.train_batch_idx == trainer.fit_loop.batch_idx + 1
|
|
if not self.is_disabled and self.train_batch_idx % self.refresh_rate == 0:
|
|
assert self.main_progress_bar.n == self.train_batch_idx
|
|
self.train_batches_seen += 1
|
|
|
|
def on_validation_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
super().on_validation_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
|
|
if not self.is_disabled and self.val_batch_idx % self.refresh_rate == 0:
|
|
assert self.val_progress_bar.n == self.val_batch_idx
|
|
self.val_batches_seen += 1
|
|
|
|
def on_test_batch_end(self, trainer, pl_module, outputs, batch, batch_idx, dataloader_idx):
|
|
super().on_test_batch_end(trainer, pl_module, outputs, batch, batch_idx, dataloader_idx)
|
|
if not self.is_disabled and self.test_batch_idx % self.refresh_rate == 0:
|
|
assert self.test_progress_bar.n == self.test_batch_idx
|
|
self.test_batches_seen += 1
|
|
|
|
progress_bar = CurrentProgressBar(refresh_rate=refresh_rate)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
callbacks=[progress_bar],
|
|
progress_bar_refresh_rate=101, # should not matter if custom callback provided
|
|
limit_train_batches=1.0,
|
|
num_sanity_val_steps=2,
|
|
max_epochs=3,
|
|
)
|
|
assert trainer.progress_bar_callback.refresh_rate == refresh_rate
|
|
|
|
trainer.fit(model)
|
|
assert progress_bar.train_batches_seen == 3 * progress_bar.total_train_batches
|
|
assert progress_bar.val_batches_seen == 3 * progress_bar.total_val_batches + trainer.num_sanity_val_steps
|
|
assert progress_bar.test_batches_seen == 0
|
|
|
|
trainer.validate(model)
|
|
assert progress_bar.train_batches_seen == 3 * progress_bar.total_train_batches
|
|
assert progress_bar.val_batches_seen == 4 * progress_bar.total_val_batches + trainer.num_sanity_val_steps
|
|
assert progress_bar.test_batches_seen == 0
|
|
|
|
trainer.test(model)
|
|
assert progress_bar.train_batches_seen == 3 * progress_bar.total_train_batches
|
|
assert progress_bar.val_batches_seen == 4 * progress_bar.total_val_batches + trainer.num_sanity_val_steps
|
|
assert progress_bar.test_batches_seen == progress_bar.total_test_batches
|
|
|
|
|
|
@pytest.mark.parametrize("limit_val_batches", (0, 5))
|
|
def test_num_sanity_val_steps_progress_bar(tmpdir, limit_val_batches: int):
|
|
"""
|
|
Test val_progress_bar total with 'num_sanity_val_steps' Trainer argument.
|
|
"""
|
|
|
|
class CurrentProgressBar(ProgressBar):
|
|
val_pbar_total = 0
|
|
sanity_pbar_total = 0
|
|
|
|
def on_sanity_check_end(self, *args):
|
|
self.sanity_pbar_total = self.val_progress_bar.total
|
|
super().on_sanity_check_end(*args)
|
|
|
|
def on_validation_epoch_end(self, *args):
|
|
self.val_pbar_total = self.val_progress_bar.total
|
|
super().on_validation_epoch_end(*args)
|
|
|
|
model = BoringModel()
|
|
progress_bar = CurrentProgressBar()
|
|
num_sanity_val_steps = 2
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
num_sanity_val_steps=num_sanity_val_steps,
|
|
limit_train_batches=1,
|
|
limit_val_batches=limit_val_batches,
|
|
callbacks=[progress_bar],
|
|
logger=False,
|
|
checkpoint_callback=False,
|
|
)
|
|
trainer.fit(model)
|
|
|
|
assert progress_bar.sanity_pbar_total == min(num_sanity_val_steps, limit_val_batches)
|
|
assert progress_bar.val_pbar_total == limit_val_batches
|
|
|
|
|
|
def test_progress_bar_default_value(tmpdir):
|
|
"""Test that a value of None defaults to refresh rate 1."""
|
|
trainer = Trainer(default_root_dir=tmpdir)
|
|
assert trainer.progress_bar_callback.refresh_rate == 1
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, progress_bar_refresh_rate=None)
|
|
assert trainer.progress_bar_callback.refresh_rate == 1
|
|
|
|
|
|
@mock.patch.dict(os.environ, {"COLAB_GPU": "1"})
|
|
def test_progress_bar_value_on_colab(tmpdir):
|
|
"""Test that Trainer will override the default in Google COLAB."""
|
|
trainer = Trainer(default_root_dir=tmpdir)
|
|
assert trainer.progress_bar_callback.refresh_rate == 20
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, progress_bar_refresh_rate=None)
|
|
assert trainer.progress_bar_callback.refresh_rate == 20
|
|
|
|
trainer = Trainer(default_root_dir=tmpdir, progress_bar_refresh_rate=19)
|
|
assert trainer.progress_bar_callback.refresh_rate == 19
|
|
|
|
|
|
class MockedUpdateProgressBars(ProgressBar):
|
|
"""Mocks the update method once bars get initializied."""
|
|
|
|
def _mock_bar_update(self, bar):
|
|
bar.update = Mock(wraps=bar.update)
|
|
return bar
|
|
|
|
def init_train_tqdm(self):
|
|
bar = super().init_train_tqdm()
|
|
return self._mock_bar_update(bar)
|
|
|
|
def init_validation_tqdm(self):
|
|
bar = super().init_validation_tqdm()
|
|
return self._mock_bar_update(bar)
|
|
|
|
def init_test_tqdm(self):
|
|
bar = super().init_test_tqdm()
|
|
return self._mock_bar_update(bar)
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"train_batches,val_batches,refresh_rate,train_deltas,val_deltas",
|
|
[
|
|
[2, 3, 1, [1, 1, 1, 1, 1], [1, 1, 1]],
|
|
[0, 0, 3, [], []],
|
|
[1, 0, 3, [1], []],
|
|
[1, 1, 3, [2], [1]],
|
|
[5, 0, 3, [3, 2], []],
|
|
[5, 2, 3, [3, 3, 1], [2]],
|
|
[5, 2, 6, [6, 1], [2]],
|
|
],
|
|
)
|
|
def test_main_progress_bar_update_amount(
|
|
tmpdir, train_batches: int, val_batches: int, refresh_rate: int, train_deltas: list, val_deltas: list
|
|
):
|
|
"""
|
|
Test that the main progress updates with the correct amount together with the val progress. At the end of
|
|
the epoch, the progress must not overshoot if the number of steps is not divisible by the refresh rate.
|
|
"""
|
|
model = BoringModel()
|
|
progress_bar = MockedUpdateProgressBars(refresh_rate=refresh_rate)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_train_batches=train_batches,
|
|
limit_val_batches=val_batches,
|
|
callbacks=[progress_bar],
|
|
logger=False,
|
|
checkpoint_callback=False,
|
|
)
|
|
trainer.fit(model)
|
|
if train_batches > 0:
|
|
progress_bar.main_progress_bar.update.assert_has_calls([call(delta) for delta in train_deltas])
|
|
if val_batches > 0:
|
|
progress_bar.val_progress_bar.update.assert_has_calls([call(delta) for delta in val_deltas])
|
|
|
|
|
|
@pytest.mark.parametrize("test_batches,refresh_rate,test_deltas", [[1, 3, [1]], [3, 1, [1, 1, 1]], [5, 3, [3, 2]]])
|
|
def test_test_progress_bar_update_amount(tmpdir, test_batches: int, refresh_rate: int, test_deltas: list):
|
|
"""
|
|
Test that test progress updates with the correct amount.
|
|
"""
|
|
model = BoringModel()
|
|
progress_bar = MockedUpdateProgressBars(refresh_rate=refresh_rate)
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
max_epochs=1,
|
|
limit_test_batches=test_batches,
|
|
callbacks=[progress_bar],
|
|
logger=False,
|
|
checkpoint_callback=False,
|
|
)
|
|
trainer.test(model)
|
|
progress_bar.test_progress_bar.update.assert_has_calls([call(delta) for delta in test_deltas])
|
|
|
|
|
|
def test_tensor_to_float_conversion(tmpdir):
|
|
"""Check tensor gets converted to float"""
|
|
|
|
class TestModel(BoringModel):
|
|
def training_step(self, batch, batch_idx):
|
|
self.log("a", torch.tensor(0.123), prog_bar=True, on_epoch=False)
|
|
self.log("b", {"b1": torch.tensor([1])}, prog_bar=True, on_epoch=False)
|
|
self.log("c", {"c1": 2}, prog_bar=True, on_epoch=False)
|
|
return super().training_step(batch, batch_idx)
|
|
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir, max_epochs=1, limit_train_batches=2, logger=False, checkpoint_callback=False
|
|
)
|
|
trainer.fit(TestModel())
|
|
|
|
torch.testing.assert_allclose(trainer.progress_bar_metrics["a"], 0.123)
|
|
assert trainer.progress_bar_metrics["b"] == {"b1": 1.0}
|
|
assert trainer.progress_bar_metrics["c"] == {"c1": 2.0}
|
|
pbar = trainer.progress_bar_callback.main_progress_bar
|
|
actual = str(pbar.postfix)
|
|
assert actual.endswith("a=0.123, b={'b1': 1.0}, c={'c1': 2.0}"), actual
|
|
|
|
|
|
@pytest.mark.parametrize(
|
|
"input_num, expected",
|
|
[
|
|
[1, "1"],
|
|
[1.0, "1.000"],
|
|
[0.1, "0.100"],
|
|
[1e-3, "0.001"],
|
|
[1e-5, "1e-5"],
|
|
["1.0", "1.000"],
|
|
["10000", "10000"],
|
|
["abc", "abc"],
|
|
],
|
|
)
|
|
def test_tqdm_format_num(input_num: Union[str, int, float], expected: str):
|
|
"""Check that the specialized tqdm.format_num appends 0 to floats and strings"""
|
|
assert tqdm.format_num(input_num) == expected
|
|
|
|
|
|
class PrintModel(BoringModel):
|
|
def training_step(self, *args, **kwargs):
|
|
self.print("training_step", end="")
|
|
return super().training_step(*args, **kwargs)
|
|
|
|
def validation_step(self, *args, **kwargs):
|
|
self.print("validation_step", file=sys.stderr)
|
|
return super().validation_step(*args, **kwargs)
|
|
|
|
def test_step(self, *args, **kwargs):
|
|
self.print("test_step")
|
|
return super().test_step(*args, **kwargs)
|
|
|
|
def predict_step(self, *args, **kwargs):
|
|
self.print("predict_step")
|
|
return super().predict_step(*args, **kwargs)
|
|
|
|
|
|
@mock.patch("pytorch_lightning.callbacks.progress.tqdm.write")
|
|
def test_progress_bar_print(tqdm_write, tmpdir):
|
|
"""Test that printing in the LightningModule redirects arguments to the progress bar."""
|
|
model = PrintModel()
|
|
bar = ProgressBar()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=0,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
limit_test_batches=1,
|
|
limit_predict_batches=1,
|
|
max_steps=1,
|
|
callbacks=[bar],
|
|
)
|
|
trainer.fit(model)
|
|
trainer.test(model)
|
|
trainer.predict(model)
|
|
assert tqdm_write.call_count == 4
|
|
assert tqdm_write.call_args_list == [
|
|
call("training_step", end="", file=None, nolock=False),
|
|
call("validation_step", end=os.linesep, file=sys.stderr, nolock=False),
|
|
call("test_step", end=os.linesep, file=None, nolock=False),
|
|
call("predict_step", end=os.linesep, file=None, nolock=False),
|
|
]
|
|
|
|
|
|
@mock.patch("pytorch_lightning.callbacks.progress.tqdm.write")
|
|
def test_progress_bar_print_no_train(tqdm_write, tmpdir):
|
|
"""Test that printing in the LightningModule redirects arguments to the progress bar without training."""
|
|
model = PrintModel()
|
|
bar = ProgressBar()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=0,
|
|
limit_val_batches=1,
|
|
limit_test_batches=1,
|
|
limit_predict_batches=1,
|
|
max_steps=1,
|
|
callbacks=[bar],
|
|
)
|
|
|
|
trainer.validate(model)
|
|
trainer.test(model)
|
|
trainer.predict(model)
|
|
assert tqdm_write.call_count == 3
|
|
assert tqdm_write.call_args_list == [
|
|
call("validation_step", end=os.linesep, file=sys.stderr, nolock=False),
|
|
call("test_step", end=os.linesep, file=None, nolock=False),
|
|
call("predict_step", end=os.linesep, file=None, nolock=False),
|
|
]
|
|
|
|
|
|
@mock.patch("builtins.print")
|
|
@mock.patch("pytorch_lightning.callbacks.progress.tqdm.write")
|
|
def test_progress_bar_print_disabled(tqdm_write, mock_print, tmpdir):
|
|
"""Test that printing in LightningModule goes through built-in print function when progress bar is disabled."""
|
|
model = PrintModel()
|
|
bar = ProgressBar()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=0,
|
|
limit_train_batches=1,
|
|
limit_val_batches=1,
|
|
limit_test_batches=1,
|
|
limit_predict_batches=1,
|
|
max_steps=1,
|
|
callbacks=[bar],
|
|
)
|
|
bar.disable()
|
|
trainer.fit(model)
|
|
trainer.test(model, verbose=False)
|
|
trainer.predict(model)
|
|
|
|
mock_print.assert_has_calls(
|
|
[call("training_step", end=""), call("validation_step", file=ANY), call("test_step"), call("predict_step")]
|
|
)
|
|
tqdm_write.assert_not_called()
|
|
|
|
|
|
def test_progress_bar_can_be_pickled():
|
|
bar = ProgressBar()
|
|
trainer = Trainer(fast_dev_run=True, callbacks=[bar], max_steps=1)
|
|
model = BoringModel()
|
|
|
|
pickle.dumps(bar)
|
|
trainer.fit(model)
|
|
pickle.dumps(bar)
|
|
trainer.test(model)
|
|
pickle.dumps(bar)
|
|
trainer.predict(model)
|
|
pickle.dumps(bar)
|
|
|
|
|
|
@RunIf(min_gpus=2, special=True)
|
|
def test_progress_bar_max_val_check_interval_0(tmpdir):
|
|
_test_progress_bar_max_val_check_interval(
|
|
tmpdir, total_train_samples=8, train_batch_size=4, total_val_samples=2, val_batch_size=1, val_check_interval=0.2
|
|
)
|
|
|
|
|
|
@RunIf(min_gpus=2, special=True)
|
|
def test_progress_bar_max_val_check_interval_1(tmpdir):
|
|
_test_progress_bar_max_val_check_interval(
|
|
tmpdir, total_train_samples=8, train_batch_size=4, total_val_samples=2, val_batch_size=1, val_check_interval=0.5
|
|
)
|
|
|
|
|
|
def _test_progress_bar_max_val_check_interval(
|
|
tmpdir, total_train_samples, train_batch_size, total_val_samples, val_batch_size, val_check_interval
|
|
):
|
|
world_size = 2
|
|
train_data = DataLoader(RandomDataset(32, total_train_samples), batch_size=train_batch_size)
|
|
val_data = DataLoader(RandomDataset(32, total_val_samples), batch_size=val_batch_size)
|
|
|
|
model = BoringModel()
|
|
trainer = Trainer(
|
|
default_root_dir=tmpdir,
|
|
num_sanity_val_steps=0,
|
|
max_epochs=1,
|
|
weights_summary=None,
|
|
val_check_interval=val_check_interval,
|
|
gpus=world_size,
|
|
accelerator="ddp",
|
|
)
|
|
trainer.fit(model, train_dataloader=train_data, val_dataloaders=val_data)
|
|
|
|
total_train_batches = total_train_samples // (train_batch_size * world_size)
|
|
val_check_batch = max(1, int(total_train_batches * val_check_interval))
|
|
assert trainer.val_check_batch == val_check_batch
|
|
val_checks_per_epoch = total_train_batches / val_check_batch
|
|
total_val_batches = total_val_samples // (val_batch_size * world_size)
|
|
assert trainer.progress_bar_callback.total_train_batches == total_train_batches
|
|
assert trainer.progress_bar_callback.total_val_batches == total_val_batches
|
|
total_val_batches = total_val_batches * val_checks_per_epoch
|
|
if trainer.is_global_zero:
|
|
assert trainer.progress_bar_callback.main_progress_bar.total == total_train_batches + total_val_batches
|